

Teaching Guidelines for

Object Oriented Programming with Java

PG-DAC March 2024

Duration: 112 hours (50 theory hours + 50 lab hours + 12 revision/practice hours)

Objective: To reinforce knowledge of Object Oriented Programming concepts using Core Java.

Prerequisites: Basic knowledge of computer programming

Evaluation: Total 100 marks
Weightage: CCEE – 40%, Lab exam – 40%, Internals – 20%

Text Book:

 Core and Advanced Java Black Book / Dreamtech Press

References:

 Java 8 Programming Black Book / Dreamtech Press
 Core Java : Volume 1 - Fundamentals by Cay S. Horstmann / Prentice Hall
 Core Java : Volume 2 - Advanced Features by Cay S. Horstmann / Prentice Hall
 Programming in Java by Sachin Malhotra, Saurabh Choudhary / Oxford University Press
 Java The Complete Reference by Herbert Schildt / McGraw Hill
 Core Java 8 for Beginners by Sharanam Shah, Vaishali Shah / Shroff Publishers
 Murach’s Java Programming by Joel Murach / Mike Murach
 Object-Oriented Analysis and Design with applications by Grady Booch / Pearson

(Note: Each Session is of 2 hours)
Session 1: Introduction to Java
Lecture:

 Introduction to java
 Features of java
 JVM Architecture
 JDK and its usage
 Structure of java class
 Working with data types: Primitive data types

Session 2: Basic programming concepts
Lecture:

 Java Tokens
 Declaring variables and methods
 Data type compatibility
 Operators
 Control statements
 Arrays 1-D and multidimensional array

Lab 1 & 2:
 Get yourself acquainted with java environment.
 Print different patterns of asterisk (*) using loops (e.g. triangle of *).

Tutorial:
 Compare syntactical similarities and dissimilarities between Java and C++.

Object Oriented Programming Concepts

Session 3: Object Oriented Programming Concepts
Lecture:

 Introduction to OOP
 Classes and Objects
 OOP principles
 Encapsulation, Abstraction, Inheritance and Polymorphism

Session 4:
Lecture:

 Static variables and methods
 Accessing static variables and methods of different class
 Introduction to reference data types
 Reference variables and methods
 Difference between reference data types and primitive data types
 Difference between reference variable and static variable

Session 5:
Lecture:

 Constructors, initializing reference variables using constructors.
 Pass by value v/s pass by reference.
 Re-assigning a reference variable.
 Passing reference variable to method
 Initializing reference variable of different class
 Heap memory and stack memory

Lab 3 & 4:
 Print default values of static & instance variables for different data types.
 Build a class Employee which contains details about the employee and compile and run its

instance.
 Build a class which has references to other classes. Instantiate these reference variables and

invoke instance methods.
Tutorial:

 Understand role of stack and heap memory in method invocation and object creation.

Session 6:
Lecture:

 Inheritance: single & multilevel
 Inheritance: Hierarchical
 Association, Aggregation and Composition

 Polymorphism: Compile time and runtime polymorphism
 Rules of overriding and overloading of methods
 super and this keyword

Lab 5 & 6:
 Create a class Employee and encapsulate the data members.
 Create demo applications to illustrate different types of inheritance.

Session 7:
Lecture:

 Upcasting &down casting of a reference variable
 Abstract class and abstract methods
 Interface (implementing multiple interfaces)

Session 8:
Lecture:

 Final variables, final methods and final class
 Functional interface
 New interface features (Java 8 & 11)
 Lambda Expression
 Inner Class (Regular, Method local, Anonymous & static inner class)
 Enum

Lab 7 & 8:
 Create an Array of Employee class and initialize array elements with different employee objects.
 Try to understand the no of objects on heap memory when any array is created.

Session 9:
Lecture:

 Access modifiers (public, private, protected and default)
 Packages and import statements.
 Static imports
 Constructor chaining (with and without packages)
 Accessing protected variables and methods outside the package

Session 10:
Lecture:

 Garbage collection in java
 Requesting JVM to run garbage collection.
 Different ways to make object eligible for garbage collection: (Nulling a reference variable, Re-

assigning a reference variable & island of isolation)
 Finalize method.

Lab 9 & 10:
 Create a demo application to understand the role of access modifiers.
 Implement multilevel inheritance using different packages.
 Access/invoke protected members/methods of a class outside the package.
 Override finalize method to understand the behavior of JVM garbage collector.

Sessions 11 & 12:
Wrapper Classes and String Class
Lecture:

 Wrapper classes and constant pools
 String class, StringBuffer& StringBuilder class
 String pool

Lab 11 & 12:
 Create sample classes to understand boxing & unboxing.
 Use different methods of java defined wrapper classes.
 Create StringDemo class and perform different string manipulation methods.

Tutorial:

 Understand the difference between String / StringBuffer / StringBuilder.

Sessions 13 & 14:
Exception Handling
Lecture:

 Exception hierarchy, Errors, Checked and un-checked exceptions.
 Exception propagation
 try-catch-finally block, throws clause and throw keyword.
 Multi catch block.
 Creating user defined checked and unchecked exceptions.

Lab 13 & 14:
 Create user defined checked and unchecked exceptions.

Session 15:
java.io & java.nio Package
Lecture:

 Brief introduction to InputStream, OutputStream, Reader and Writer interfaces
 NIO package
 Serialization and de-serialization
 Shallow copy and deep copy

Session 16:
Lecture:
Object Class & java.util Package

 Date, DateTime, Calendar class
 Converting Date to String and String to Date using SimpleDateFormat class
 Object Class: Overriding to String, equals &hashcodemethod

Lab 15 & 16:
 Create a Demo class to Read & write image/text files.
 Create SerializationDemo class to illustrate serialization and de-serialization process.
 Create a demo class for Date, Time and Calendar

Collections

Sessions 17, 18 & 19:
Lecture:

 Introduction to collections: Collection hierarchy
 List, Queue, Set and Map Collections
 List Collection:

o ArrayList, LinkedList
o Vector (insert, delete, search, sort, iterate, replace operations)

 Collections class
 Comparable and Comparator interfaces
 Queue collection

Labs 17, 18 & 19:
 Create DateManipulator class to convert String to date, date to String and to find out number of

days between two dates.
 Create a list of java defined wrapper classes and perform insert/delete/search/iterate/sort

operations.
 Create a collection of Employee class and sort objects using comparable and comparator

interfaces.
 Implement Queue data structure using LinkedList and Queue collection.

Sessions 20 & 21:
Lecture:

 Set Collection:
o HashSet, LinkedHashSet&TreeSet collection
o Backed set collections.

 Map Collection:
o HashTable, HashMap, LinkedHashMap&TreeMap classes
o Backed Map collections.

 Concurrent collections

Labs 20 & 21:
 Create an Employee HashSet collection and override equals &hashCode methods to understand

how the set maintains uniqueness using these methods.
 Create a Sample class to understand generic assignments using “? extends SomeClass” , “? super

someclass ” and “?”.

Session 22:
Lecture:

 MultiThreading : Thread class and Runnable Interface
 sleep, join, yield, setPriority, getPrioritymethods.
 ThreadGroup class

Lab 22:
 Create multiple threads using Thread class and Runnable interfaces.
 Assign same task and different task to multiple threads.
 Understand sleep, join, yield methods.

Sessions 23 & 24:
Lecture:

 Synchronization
 Deadlock
 Wait, notify and notifyAllmethods.
 Producer & Consumer problem

Lab 23 & 24:
 Create a Deadlock class to demonstrate deadlock in multithreading environment.
 Implement wait, notify and notifyAll methods.
 Demonstrate how to share threadlocal data between multiple threads.

Session 25 : Generics and Reflection API
Lecture:

 Introduction to generics
 Generic classes
 Generic methods
 Wild cards (upper and lower)
 Reflection

Lab 25:
 Invoke private methods of some other class using reflection.
 Create multiple threads using anonymous inner classes.
 Create multiple threads using lambda expressions.

