
hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 1 of 12 

 

 

hyPACK-2013 
Four-Days Technology Workshop on 
Hybrid Computing - Coprocessors & Accelerators -  

 Power-Aware Computing & Performance of Application Kernels  
Jointly Organized by 

Centre for Development of Advanced Computing (C-DAC), Pune   
Centre for Modelling & Simulation (CMSD), HPC Facility, University of Hyderabad,  

Venue : CMSD, University of Hyderabad, Hyderabad 
Dates : October 15 (Tuesday) – October 18 (Friday)    

 

hyPACK-2013   : A Suite of programs on  of  Intel Xeon-Phi Coprocessors 
 

 A set of programs and libraries, used for NLA problems and application kernels are developed on 

Intel Xeon-Phi Coprocessors.   The aim of the programs is to understand tuning & performance 

issues on Intel Xeon-Phi Compiler Vectorization features, x86 SMP features, Intel MKL Lib. and 

obtain the best achievable performance for NLA kernels.  The Xeon-Phi Compiler assisted 

Vectorization pragmas and Intel MKL libraries are used. Some codes compare the best performance 

of selective NLA codes, application kernels and application & system benchmarks and report the 

results using with and without various capabilities of Intel's compiler optimization features of 

Xeon-Phi Coprocessors using shared Memory Programing OpenMP /Pthreads/ Intel TBB  and 

Explicit Message Passing Interface (MPI).  

 The list of programs are developed with the help of Intel Xeon-Phi  Coprocessors  documents which   

are publicly available as Intel Books, Intel documents,  Conferences, Workshops, Notes Material 

and especially recent webinars  have been partially incorporated. List of  references as  given in 

annexure-I are used for this work. 

 

1.1. Auto-Parallelization – Compiler features; Automatic offload & Compiler-Assisted 

Offload 

1.1.1. Back-Ground & Skill-Set Required: 

 Compiler automatically translates portions of serial code into equivalent multithreaded 

code with using these options: -parallel /Qparallel 

 The auto-parallelizer analyzes the dataflow of loops and generates multithreaded 

code for those loops which can safely and efficiently be executed in parallel. The auto-

parallelizer report can provide information about program sections that could be 

parallelized by the compiler. 

1.1.2. Write your own program for NLA kernel codes using auto-parallelisation features on 

Xeon-Phi Coprocessors & analyze the compiler generated optimization reports for 

various problem sizes for typical matrix-matrix multiplication algorithms and obtain 

maximum achievable performance. 



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 2 of 12 

 

1.2. Using Intel Compiler (loop optimization pragmas/directives) Automatic offload & 

Compiler-Assisted Offload 

1.2.1. Back-Ground & Skill Set Required: 
Get exposure to various vectorization flags as given below. 

 IVDEP  : ignore vector dependency  * - LOOP COUNT : advise typical iteration 

count(s)  * - UNROLL : suggest loop unroll factor  

 DISTRIBUTE POINT : advise where to split loop  

 PREFETCH : hint to prefetch data  

 VECTOR : vectorization hints  : * Aligned assume data is aligned;  * Always override 

cost model; * Non-temporal advise use of streaming stores  

 NOVECTOR  : do not vectorize  

 PARALLEL : override efficiency heuristics for auto-parallelization  

1.2.2. Write your own program for NLA kernel codes with or without use of Intel MKL 

libraries, and Application kernels i.e., Solution of Partial differential Eqs. (PDEs) using 

various loop optimization and compiler techniques. 

1.3. Using Intel Compiler (loop optimization pragmas/directives) GAP – Guided 

Automatic Parallelization;  Automatic offload & Compiler-Assisted Offload 

1.3.1. Back-Ground & Skill Set Required: 

 Use compiler to help detect what is blocking optimizations – in particular 

vectorization, parallelization and data transformations – gives advice on how to 

change code, add directives, add compiler options 

 Extend diagnostic message for failed vectorization and parallelization by specific hints 

to fix problem 

 Not possible to do Automatic vectorizer or parallelizer and it is restricted to changes 

applied to the program to be compiled 

1.3.2. Write your own software modules for NLA Kernels using compiler auto-parallelization 

features of Intel Xeon-Phi and analyze the GAP generated optimization reports. 

Summarize the performance and scalability issues for various problems size of your code.  

1.4. Vectorization Programming with SIMD update   

1.4.1. Back-Ground & Skill Set Required: 

(Vectorization: Pragma/Directive SIMD) : Positioning of SIMD Vectorization  (Use 

compiler based fully automatic vectorzation) ; Use Auto-Vectorization hints (#pragma 

ivdep); User Mandated Vectorization (SIMD Directive); Use SIMD Intrinsic Class 

(F32Vec4 add) ; Vector intrinsic (mm_add_ps()) ;  

1.4.2. Write your own software modules for NLA kernels using various clauses of SIMD 

Directives. Analyze the Vectorization reports and summarize performance issues for 

different problems size. 

1.5. Vectorization Ailgn The Data  

1.5.1. Back-Ground & Skill Set Required : 

 Vectorization : Align Data  - Role of compiler :  

 _declspec(align(n, [offset])) : Instructs the compiler to create the 

variable so that it is aligned on an “n”-byte boundary, with an “offset” 

(Default=0) in bytes from that boundary  



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 3 of 12 

 

 void* _mm_malloc (int size, int n) Instructs the compiler to create a 

pointer to memory such that the pointer is aligned on an n-byte boundary and tell 

the compiler…  

 #pragma vector aligned | unaligned  

 Vectorize using aligned or unaligned loads and stores for vector accesses, 

overriding compiler’s cost model  

 __assume_aligned(a,n) Instructs the compiler to assume that array a is aligned 

on an n-byte boundary n=16 for SSE, n=32 for AVX 

1.5.2. Write your own suite of programs for NLA Kernels (Vector-Vector Addition, Matrix-

Matrix Addition),  Computational Mathematics kernels & PDE solvers using   vector 

aligned data features of Intel Xeon-Phi using declspec(align(*)).  Analyze 

Vectorization reports & summarize the performance issues for different problems size of 

your code. (SIMD Directives -  & IVDEP  directives) DIRECTIVES /PRAGMAS to 

assist OR REQUIRE VECTORIZATION 

 

1.6. Obtain the performance for Vector into Vector Multiplication and Matrix into 

Matrix Multiplication using Intel MKL Libraries on Intel XeonPhi Coprocessors & 

Automatic offload & Compiler-Assisted Offload 

1.6.1. Back-Ground & Skill Set Required:  

Use Intel MKL libraries for NLA Kernels and write programs using libraries such as 

Level1, Level2, Level3 BLAS,  SGEMM, DGEMM, Managing Multi-Core Performance: 

Use OpenMP & KMP_AFFINITY to obtain best performance  
1.6.2. Write your own software modules for NLA kernels using Intel MKL with (a) compiler 

assisted offload and (b), Vectorization features 

1.7. Obtain the performance using Intel MKL Libraries on Intel XeonPhi 

1.7.1. Back-Ground & Skill Set Required:  

Use Intel MKL libraries for NLA Kernels and write programs using libraries such as 

Level1, Level2, Level3 BLAS,  SGEMM, DGEMM, DDOT, DETRF,  and Direct Sparse 

Solver 

 Managing Multi-Core Performance: Use OpenMP & KMP_AFFINITY to obtain best 

performance (Usesystem function sched_setaffinity to bind the threads to the 

cores on different sockets. Intel MKL accesses the memory functions by pointers 

i_malloc, i_free, etc., which are visible at the application level. 

 Aligning Addresses on 128-byte Boundaries: Intel MKL or for reproducible results from 

run to run of Intel MKL functions require alignment of data arrays. To align an array on 

128-byte boundaries, use mkl_malloc() in place of system provided memory 
allocators,  

 To Improve Performance Call Intel MKL memory allocation routines, such as 

mkl_malloc; & Use the mmap system call with the MAP_HUGETLB flag  (Refer 

compiler assisted off-load- guide) 



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 4 of 12 

 

1.7.2. Write your own software modules for NLA kernels using Intel MKL with (a) compiler 

assisted offload (b) Reusing data that already exists in the memory of the coprocessor 

helps to reduce transferring data for an example which illustrates how to perform 

multiple operations on a single set of input matrices. 

1.8. Obtain the performance of NLA codes using different types of array operations and 

analyze the performance on Intel Xeon-Phi. 
1.8.1.  Back-Ground & Skill Set Required:  

Array Operations (SoA or AoS); Vectorization matching in Array Operations  

1.8.2. Write your own program for NLA kernels with and without array operations using 

vectorization features  

1.9. Obtain the performance of matrix into matrix multiplication code based on block 

partitioning of matrices on Intel Xeon-Phi. 
1.9.1. Back-Ground & Skill Set Required:  

Array Operations, Xeon-Phi Persistent Storage APIs, Dynamic Memory Declarations, 

Using Pointers, Asynchronous data transfers, and Double buffering.  
1.9.2. Write your own program for Matrix-Matrix Multiplication based on Block-partitioning of input 

matrices and use the Xeon-Phi Programming Environment features such as (a). Allocated 

Persistent Storage on Co-Processor  (b). Asynchronous data transfer from the coprocessor to the 

processor  (c). Double buffers inputs to an offload 

 

1.10. Obtain the performance of NLA codes that use read /write files on Coprocessor 

1.10.1. Back-Ground & Skill Set Required:  

 Array Operations (SoA or AoS); Vectorization matching in Array Operations Understand 

role of MIC_PROXY_IO  

1.10.2. Write your own program to perform large scale I/O operations and quantify the overheads. 

1.11. Write your own code for matrix-matrix multiplication using different access patterns 

of matrices using SoS / AoS and analyze the performance. 

1.11.1. Back-Ground & Skill Set Required:  

Array Operations (SoA or AoS); Vectorization matching in Array Operations Understand 

role of MIC_PROXY_IO  

1.11.2. Write your own program to perform large scale I/O operations and quantify the overheads. 

1.12. Xeon Phi Coprocessor Arch:  Measure copy Memory Bandwidth with varying number 

of thread count 

1.12.1. Background & Skill Set Required : Understand the processor core, Vector Processing 

Unit (VPU),  Core Ring Interface (CRI), RING, SBOC, GBOX, PMU; Understand access 

time & memory bandwidth limitations 

1.12.2. Write your own program to measure copy-memory bandwidth using openMP or Pthreads, 

using 8/16/32 cores of Intel Xeon-Phi with different work-loads, and analyze the 

performance  

1.12.3. Obtain Performance of Stream – OpenMP benchmark on Intel Xeon-Phi and compare the 

performance with the output of previous example using different programming paradigms. 

1.13. Xeon Phi Coprocessor Arch:  Measure MPI Latency & Bandwidth in NATIVE mode 

using various MIC coprocessors on a node as well as in cluster.    

1.13.1. Background & Skill Set Required : MPI Benchmarks, Understand Software and hardware 

overheads- Interconnection networks of Cluster, tune MPI on cluster, MPI point-to-point & 

Collective Communications /Computations 



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 5 of 12 

 

1.13.2. Write your own program  to measure latency,  bandwidth and quantify overheads using MPI 

point-to-point and Collective communications  on  Intel Xeon-Phi Coprocessors in a 

Message Passing Cluster with different message sizes &  analyze the performance  

1.14. Xeon-Phi Coprocessor Arch – Measure Performance using OpenMP, Pthreads & Intel 

TBB for Vector-Vector & Matrix-Matrix Multiplication  

1.14.1. Background & Skill Set Required:  

- Important features of Cache hierarchy are: The L1 cache has a 32 KB L1 instruction 

cache and 32 KB L1 data cache. Associativity is 8-way, with a cache line-size of 64 byte. 

It has a load-to-use latency of 1 cycle   

- The L2 cache is a unified cache which is inclusive of the L1 data and instruction caches. 

Each core contributes 512 KB of L2 to the total global shared L2 cache storage. If no 

cores share any data or code, then the effective total L2 size of the chip is up to 31 MB 

1.14.2. Write your own software modules for NLA or based on SGEMM/ GEMM) kernels using 

openMP or Pthreads, using 8/16/32 cores of Intel Xeon-Phi with different work-loads,  and 

analyze the performance (Get System Info & Device Coprocessor using –ifconfig & 

micinfo) in terms of Gflops. 

1.15. Xeon Phi-: Native Compilation/Compiler’s offload pragmas 

1.15.1. Background & Skill Set Required: 

- Align data to 64 Bytes (512 Bits) for Xeon-phi and perform vectorization (due to the 

large SIMD width of 64 bytes & new set of instructions on Xeon-Phi may allow more 

loops to be parallelized on the Coprocessor, subject to requirements for vectorization 

loops is satisfied. 

- Use Compiler Pragmas  and use compiler options such as -vecreport2 to see if loops 

were vectorized for Xeon-Phi (Message "*MIC* Loop was vectorized" etc). The options 

-opt-report-phase hlo (High Level Optimizer Report) or -opt-report-phase ipo_inl 

(Inlining report) may also be useful. 

1.15.2. Write your own software modules for NLA (SGEMM/ DGEMM) kernels code using 

openMP allocated memory on the heap aligned to 64 byte boundary & analyze the 

performance issues & scalability issues (Use #pragma vector aligned “#pragma 

ivdep”  & “posix_memalign” for dynamic  memory alignment) 

1.16. Xeon Phi-: Information about Compiler’s offload (Automatic Off-load) 

1.16.1. Background & Skill-Set Required:  

- Use the compiler option -vec-report2  to know about which  loops have been 

vectorized on the host and the Xeon-Phi coprocessor: 

- To obtain information about performance and data transfers at runtime, set-up the  

environment variable  OFFLOAD_REPORT  

- CDAC@john:~ export OFFLOAD_REPORT=2   CDAC@john:~ use ./run 

- A subroutine with all computations to be performed on Xeon-Phi can be called within an 

offloaded block region. To do this, the function has to be declared with 
__attribute__((target(mic))) . 
_attribute__((target(mic))) void  MatMatMult (int n, \ 

          double * restrict a,  \ 

          double * restrict b, double *restrict c ){ 

} 

main(){ 

... 

#pragma offload target(mic) in(a,b:length(n*n)) inout(c:length(n*n))  



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 6 of 12 

 

    { 

     MatMatMult (n,a,b,c); 

    } 

} 

1.16.2. Write your own program to  analyze the CPU time, Xeon-Phi time, CPU-to-Xeon-Phi 

Data transfer time and Xeon-Phi-CPU data transfer time and quantify the time taken for 

different problem sizes with respect to the number of OpenMP threads used and 

understand data transfers over the PCIe bus from the host to the accelerator and vice 

versa.  

1.16.3. Write your own code for matrix-matrix multiplication in which matrix- multiplication 

code of the previous example is called as a subroutine call and analyze the performance 

& scalability analysis 

1.17. Xeon Phi: Explicit Sharing workload between the Coprocessor and host using 

OpenMP or Pthreads 

1.17.1. Background & Skill-Set Required :  

To distribute work between the host and Coprocessor for typical NLA kernel using 

OpenMP, Pthreads and MPI 
#pragma omp parallel 

     { 

#pragma omp sections 

         { 

#pragma omp section 

             { 

//section running on the coprocessor 

#pragma offload target(mic) in(Mata,Matb:length(n*n)) 

inout(Matc:length(n*n))  

   { 

        MatMatMulit(n,a,b,c); 

  } 

            } 

#pragma omp section 

       { 

        //section running on the host 

          MatMatMut(n, MatP, MatQ, MatR); 

       } 

   } 

} 

1.17.2. Write your own code to implement Matrix into Vector Multiplication and n-body 

simulation algorithm using OpenMP work-sharing constructs in which computations are 

performed on host and Coprocessor for different problem sizes.  

1.18. Performance: Persistent data on the Coprocessors – Address data transfers over the 

slow PCIe bus from the host 

 



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 7 of 12 

 

1.18.1. Background & Skill-Set Required:  

 The data transfers over the PCIe bus from the host to the accelerator (Coprocessor) 

and vice versa is the main bottleneck for obtaining performance..  To increase the 

performance of code, it is necessary to keep the data on Coprocessor between 

computations using the same data in-order to minimize the data transfer and thereby 

increase the performance 
- #define ALLOC alloc_if(1) 
- #define FREE free_if(1) 
- #define RETAIN free_if(0) 
- #define REUSE alloc_if(0) 

 
one can simply use the following notation: 

- to allocate data and keep it for the next offload 

  #pragma offload target(mic)\ 

         in(p:length(l) ALLOC RETAIN) 

- to reuse the data and still keep it on the coprocessor 

    #pragma offload target(mic) \ 

in(p:length(l) REUSE RETAIN) 

 
- to reuse the data again and free the memory. (FREE is the default, 

and does not need to be explicitly specified) 

         #pragma offload target(mic) \ 

            in(p:length(l) REUSE FREE) 

1.18.2. Write your own code for matrix system of linear equations by Conjugate Gradient 

Method in which some vector values persistent on Coprocessor. 

1.18.3. Write your own code to implement solution of heat transfer PDE application    in which 

assembly matrices of Finite Element Computations is performed on Intel Xeon-Phi 

1.18.4. Write your own program to perform and Matrix-Vector Multiplication having appropriate 

data of matrices persistent on Coprocessor. 

 

1.19. Performance: OpenMP and Loop un-rolling with nested loops & Vectorization 

1.19.1. Background & Skill Set Required:  

- Loop Un-rolling & Vectorization using OpenMP implementation  

1.19.2. Write your own codes for NLA kernels &  PDE Solver using MPI-OpenMP (with 

Collapse and without Collapse) and Loop un-rolling (nested loops) with Vectorization 

(ivdep and vector aligned)  (use  OpenMP supported  four different kinds of loop 

scheduling  

 

1.20. Performance: Using MKL (SGEMM/DGEMM) for offloading and BLAS routines 

Open MP implementation  

1.20.1. Background & Skill Set Required:   

- Understand performance of SGEMM/DGEMM on number of Cores 

- MKL memory Allocation Aps 

 



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 8 of 12 

 

1.20.2. Write your own codes for NLA kernels \using Intel MKL SGEMM & DGEMM library 

with optimal use of Intel Xeon-Phi Cores and obtain the best performance of code using 

MIC Vectorization features. 

1.21. Simultaneous computation on host and accelerator – OpenMP 

1.21.1. Background & Skill-Set Required:  

- To perform computations on host and the Coprocessor, function is generated for both 

Xeon-Phi  and CPU; One thread executes the offload on Xeon-Phi. The other thread 

executes the same function on the host.  
 

    Double  __attribute__((target(mic)))myworkload(doubleinput){ 

     // do something useful here 

    return result; 

        } 

int main(void){ 

   //…. Initialize variables 

   #pragma omp parallel sections 

   { 

     #pragma omp section 

     { 

     #pragma offload target(mic)  

     result1= myworkload(input1); 

     } 

    #pragma omp section 

                  result2= myworkload(input2); 

        } 

}          

1.21.2. Write your own program for implementation of PDE solver using Finite Difference 

Method (FDM) using OpenMP and MPI. The computations are performed on host and 

the Coprocessors  

1.21.3. Write your own program – Monte Carlo Simulation using Intel Xeon-Phi Coprocessor 

features 

1.22.  Overlap Computation and Communication - Asynchronous Transfer - Using Signals 

OpenMP & Pthreads 

1.22.1. Background & Skill-Set Required:  

- To overlap computations & communication, a function is generated on   CPU which 

generalizes data decomposition on host processor. One thread executes the offload code 

on MIC, while the other thread transfer the data from host  to MIC. 

- Start an asynchronous transfer, tracking signal in1 and Start once the completion of the 

transfer of in1 in signaled (wait)  
#pragma offload_transfer target(mic:0) \ 

  in(in1:length(cnt)alloc_if(0) free_if(0)) signal(in1) 

#pragma offload target(mic:0) nocopy(in1) wait(in1) \ 

  out(res1:length(cnt)  alloc_if(0) free_if(0)) 

#pragma offload_transfer target(mic:0)  \ 

 nocopy(in1:length(cnt) alloc_if(0) free_if(1)) 

 

1.22.2. Write your own program for implementation of NLA kernels & PDE Solver in two-

dimensional regions using MPI-OpenMP in which computations are performed on host 

and the Coprocessor. 

 



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 9 of 12 

 

1.23. Overlap Computation and communication - Asynchronous Transfer & Double 

Buffering-OpenMP & Pthreads 

1.23.1. Background & Skill Set Required:   

- To overlap computations and communication, function is generated on   CPU which 

generalizes data decomposition on host. While one thread executes the  offload code on 

MIC while the other thread transfer the data from host  to MIC (Send the buffer to  in1 

in(in1 : length(cnt) and  send buffer in2 in(in2 : length(cnt) while 

in1 is in process. Send buffer in1 while in2 is in process. 

1.23.2.  Write your own program for implementation of PDE solver using Finite Element Method 

(FEM) in two-dimensional regions using MPI OpenMP in which the computations are 

performed on host and the Coprocessor. 

1.24. Performance of Tuning OpenMP codes on Xeon-Phi Modifying Stack Size  

1.24.1. Background & Skill-Set Required:   

- Export KMP_STACKSIZE=4M; If the units are unspecified for KMP_STACKSIZE, the 

number is assumed to be in bytes. KMP_STACKSIZE overrides any OMP_STACKSIZE 

setting 

- If offloading computation from the host and MIC_ENV_PREFIX is not defined, the stack-

size environment variables are copied from host to target environment when the target 

process is spawned (along with the rest of the environment). With MIC_ENV_PREFIX 

defined, users can define separate settings in the host environment for both host and 

target values: 
export MIC_ENV_PREFIX=MIC 

export OMP_STACKSIZE=8M  

export MIC_OMP_STACKSIZE=2 

- The Intel Xeon Phi processors have more than 60 cores, each with four threads, or over 

240 hardware threads. The default OMP stack size is 4MB 

- The host environment setting of MIC_STACKSIZE should be done. This controls the 

size of the stack in the target process where in offloaded code is run and so only applies 

to offloaded code. The default size of this stack is 12 MB. Also, native applications run 

in a process whose default stack size is 8 MB 

1.24.2. Write your own program for NLA Kernels and an implementation of PDE solver by FDM  

in 2D regions using MPI OpenMP in which the computations are performed using 

MIC_KMP_AFFINITY=verbose, granularity = fine, scatter, compact, and 
gather 

1.25. Number of threads running in parallel section on Xeon-Phi 

1.25.1. Write your own program to report the number   of threads running in a parallel section and 

analyze the performance for different problems size of NLA kernels  

1.26. Get Number of Xeon-Phi Cards using for an application  

1.26.1. Background & Skill-Set Required:  

-  The status of each card can be found out using micinfo - provides information about 

host & Coprocessor and system configuration 
 

Codes run on Card # 1 or #2  

 #pragma offload target(mic [ :<expr> ] ) . 

 card # = <expr> % number_of_devices 

/* Code must run on card #, aborts if not available  

   (counts from 0)  

   If -1, runtime chooses card, aborts if not available 



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 10 of 12 

 

   If not present, runtime chooses card or runs on host if 

   none available  

*/ 

APIs: 
  #include offload.h(C/C++); USE MIC_LIB (Fortran) 

  int _Offload_number_of_devices()   /* (C/C++) */ 

  result = OFFLOAD_NUMBER_OF_DEVICES() /*(Fortran) */ 

 

  // Returns # of Intel MIC devices installed, or 0 if none 

  int _Offload_get_device_number()   /* (C/C++) */ 

  result = OFFLOAD_GET_DEVICE_NUMBER() /* (Fortran) */ 

  // Returns card number where executed, counting from 0, 

     (or -1 for CPU) 

  // Can use to share work explicitly by card number 

1.26.2. Write your own program to compute the matrix vector multiplication and sparse matrix 

into vector multiplication mapping part of computations onto each MIC of the host 

system. 

1.27. The use of the larger 2MB pages -Enabling Huge Paging on MIC with 

libhugetlbfs library 

1.27.1. Background & Skill Set Required :   

- For typical matrix computation algorithms, if the array is sufficiently large, then each 

memory access can cause a TLB miss and corresponding performance drop. Native 

applications should use mmap or hugetlbfs to allocate memory with large pages. 

- Setting PHI_USE_2MB_BUFFERS (when MIC_PREFIX=PHI) tells the runtime to 

allocate heap variables whose size is greater than the value specified by 

PHI_USE_2MB_BUFFERS in 2MB pages. 

1.27.2. Write your own program for implementation of PDE solver using Finite Finite Difference 

Method (FDM) using MPI & OpenMP, combination of MPI –OpenMP. The software 

module should use larger 2MB pages. The importance of larger pages for floating-point 

dominated FDM application is required as it performs array operation the computations 

on host and the Coprocessor.  

1.28. The use of the larger 2MB pages -Enabling Huge Paging on MIC use mmap() 

library    (hugetlbpage support)  

1.28.1. Background & Skill Set Required :   

Exposure to  hugetlbpage support in the Linux kernel which is built on top of multiple 

page size support that is provided by most modern architectures.  Users can use the huge 

page support in Linux kernel by either using the mmap system or  huge page support 

should show the number of configured huge pages in the system by running the "cat 

/proc/meminfo" command. 

1.28.2. Write your own program for implementation of PDE solver using Finite Finite Difference 

Method (FDM) using MPI & OpenMP, combination of MPI - OpenMP using mmap 

1.29. Measure Performance per Watt: Port for selective application and Macro /Micro 

benchmarks on Intel Xeon-Phi Coprocessor 

1.29.1.  Measure performance per watt using external power-off meters and appropriate APIs  

 

 
 



hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 11 of 12 

 

Annexure-I: References 
References:   

1. Theron Voran, Jose Garcia, Henry Tufo, University Of Colorado at Boulder National Center or 

Atmospheric Research, TACC-Intel Hihgly Parallel Computing Symposium, Austin TX, April 2012 

2. Robert Harkness, Experiences with ENZO on the Intel R Many Integrated Core (Intel MIC) Architecture, 

National Institute for Computational Sciences,  Oak Ridge National Laboratory 

3. Ryan C Hulguin,  National Institute for Computational Sciences, Early Experiences Developing CFD 

Solvers for the Intel Many Integrated Core (Intel MIC) Architecture, TACC-Intel Highly Parallel 

Computing Symposium April, 2012 

4. Scott McMillan,  Intel Programming Models  for Intel Xeon Processors and Intel Many Integrated Core 

(Intel MIC) Architecture, TACC-Highly Parallel Comp. Symposium April 2012 

5. Sreeram Potluri,  Karen Tomko,  Devendar Bureddy , Dhabaleswar K. Panda,  Intra-MIC MPI 

Communication using MVAPICH2: Early Experience, Network-Based Computing Laboratory, 

Department of Computer Science and Engineering The Ohio State University, Ohio Supercomputer 

Center, TACC-Highly Parallel Computing Symposium April 2012 

6. Karl W. Schulz, Rhys Ulerich, Nicholas Malaya ,Paul T. Bauman, Roy Stogner, Chris Simmons, Early 

Experiences Porting Scientific Applications to the Many Integrated Core (MIC) Platform ,Texas 

Advanced Computing Center (TACC) and Predictive Engineering and Computational Sciences (PECOS) 

Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin ,Highly 

Parallel Computing Symposium ,Austin, Texas, April 2012 

7. Kevin Stock, Louis-Noel,  Pouchet, P. Sadayappan ,Automatic Transformations for Effective Parallel 

Execution on Intel Many Integrated, The Ohio State University, April 2012 

8. http://www.tacc.utexas.edu/ 

9. Intel MIC Workshop at C-DAC, Pune April 2013 

10. First Intel Xeon Phi Coprocessor Technology Conference iXPTC 2013 New York, March 2013 

11. Shuo Li, Vectorization, Financial Services  Engineering, software and Services Group, Intel ctel 

Corporation; 

12. Intel® Xeon Phi™ (MIC) Parallelization & Vectorization, Intel Many Integrated Core Architecture, 

Software & Services Group, Developers Relations  Division 

13. Intel® Xeon Phi™ (MIC) Programming, Rama Malladi, Senior Application Engineer, Intel Corporation, 

Bengaluru India April 2013 

14. Intel® Xeon Phi™ (MIC) Performance Tuning, Rama Malladi, Senior Application Engineer, Intel 

Corporation, Bengaluru India April 2013 

15. Intel® Xeon Phi™ Coprocessor Architecture Overview, Dhiraj Kalamkar, Parallel Computing Lab, Intel 

Labs, Bangalore 

16. Changkyu Kim,Nadathur Satish ,Jatin Chhugani ,Hideki Saito,Rakesh Krishnaiyer ,Mikhail Smelyanskiy 

,Milind Girkar, Pradeep Dubey,  Closing the Ninja Performance  Gap through Traditional Programming 

and Compiler Technology , Technical Report Intel Labs , Parallel Computing Laboratory , Intel Compiler 

Lab, 2010 

17. Colfax International Announces Developer Training for Intel® Xeon Phi™ Coprocessor,  Industry First 

Training Program Developed in Consultation with Intel SUNNYVALE, CA, Nov, 2012  

18. Andrey Vladimirov Stanford University and Vadim Karpusenko , Test-driving Intel® Xeon Phi™ 

coprocessors with a basic N-body simulation Colfax International January 7, 2013 Colfax International, 

2013 http://research.colfaxinternational.com/   

19. Jim Jeffers and James Reinders,Intel® Xeon Phi™ Coprocessor High-Performance Programming by 

Morgann Kauffman Publishers  Inc, Elsevier, USA. 2013 

20. Michael McCool, Arch Robison, James Reinders, Structured Parallel Programming: Patterns for 

Efficient Computation, Morgan Kaufman Publishers  Inc, 2013. 

21. Dan Stanzione, Lars Koesterke, Bill Barth, Kent Milfeld by Preparing for Stampede: Programming 

Heterogeneous Many-Core Supercomputers.  TACC, XSEDE 12 July 2012 

http://www.tacc.utexas.edu/


hyPACK-2013 Xeon-Phi-Coprocessor-Vectorization- Tuning-Performance    

 

   CDAC, Pnne                                                       July 09, 2013                                                                  Page 12 of 12 

 

22. John Michalakes, Computational Sciences Center, NREL, & Andrew Porter, Opportunities for WRF 

Model Acceleration, WRF Users workshop, June 2012  

23. Jim Rosinski ,  Experiences Porting NOAA Weather Model FIM to Intel MIC,  ECMWF 

workshop On High Performance Computing in Meteorology, October 2012 

24. Michaela Barth, KTH Sweden , Mikko Byckling, CSC Finland, Nevena Ilieva, NCSA Bulgaria, Sami 

Saarinen, CSC Finland, Michael Schliephake, KTH Sweden, Best Practice Guide Intel Xeon Phi v0.1, 

Volker Weinberg (Editor), LRZ Germany  March 31 ,2013 

25. Barbara Chapman, Gabriele Jost and Ruud van der Pas, Using OpenMP, MIT Press Cambridge, 2008  

26. Peter S Pacheco, An Introduction Parallel Programming, Morgann Kauffman Publishers  Inc, Elsevier, 

USA. 2011 

27. Intel Developer Zone: Intel Xeon Phi Coprocessor,  

http://software.intel.com/en-us/mic-developer   

28. Intel Many Integrated Core Architecture User Forum,  

 http://software.intel.com/en-us/forums/intel-many-integrated-core   

29.  Intel Developer Zone: Intel Math Kernel Library, http://software.intel.com/en-us   

30. Intel Xeon Processors & Intel Xeon Phi Coprocessors – Introduction to High Performance Applications 

Development for Multicore and Manycore – Live Webinar, 26.-27, February .2013, 

recorded  http://software.intel.com/en-us/articles/intel-xeon-phi-training-m-core   

31. Intel Cilk Plus Home Page, http://cilkplus.org/   

32. James Reinders,  Intel Threading Building Blocks (Intel TBB), O’REILLY, 2007 

33. Intel Xeon Phi Coprocessor Developer's Quick Start Guide,  

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide  

34. Using the Intel MPI Library on Intel Xeon Phi Coprocessor Systems, 

http://software.intel.com/en-us/articles/using-the-intel-mpi-library-on-intel-xeon-phi-coprocessor-systems   

35. An Overview of Programming for Intel Xeon processors and Intel Xeon Phi coprocessors, 

http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-

processors-and-intel-xeon-phi-coprocessors_1.pdf   

36. Programming and Compiling for Intel Many Integrated Core Architecture, http://software.intel.com/en-

us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture  

37. Building a Native Application for Intel Xeon Phi Coprocessors,  

http://software.intel.com/en-us/articles/ 

38. Advanced Optimizations for Intel MIC Architecture, http://software.intel.com/en-us/articles/advanced-

optimizations-for-intel-mic-architecture   

39. Optimization and Performance Tuning for Intel Xeon Phi Coprocessors - Part 1: Optimization Essentials, 

http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeonphi-

coprocessors-part-1-optimization   

40. Optimization and Performance Tuning for Intel Xeon Phi Coprocessors, Part 2: Understanding and Using 

Hardware Events, http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-

xeon-phi-coprocessors-part-2-understanding   

41. Requirements for Vectorizable Loops,  

http://software.intel.com/en-us/articles/requirements-for-vectorizable-  

42. R. Glenn Brook, Bilel Hadri, Vincent C. Betro, Ryan C. Hulguin, Ryan Braby. Early Application 

Experiences with the Intel MIC Architecture in a Cray CX1, National Institute for Computational 

Sciences. University of Tennessee. Oak Ridge National Laboratory. Oak Ridge, TN USA 

43.  http://software.intel.com/mic-developer 

44. Loc Q Nguyen , Intel Corporation's Software and Services Group , Using the Intel® MPI Library on 
Intel® Xeon Phi™ Coprocessor System,   

45. Frances Roth, System Administration for the Intel® Xeon Phi™ Coprocessor, Intel white Paper 

46. Intel® Xeon Phi™  Coprocessor, James Reinders, Supercomputing 2012 Presentation  
47. Intel® Xeon Phi™ Coprocessor Offload Compilation, Intel software 

http://software.intel.com/en-us/mic-developer
http://software.intel.com/en-us/forums/intel-many-integrated-core
http://software.intel.com/en-us
http://software.intel.com/en-us/articles/intel-xeon-phi-training-m-core
http://cilkplus.org/
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-developers-quick-start-guide
http://software.intel.com/en-us/articles/using-the-intel-mpi-library-on-intel-xeon-phi-coprocessor-systems
http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated
http://software.intel.com/en-us/articles/
http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture
http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeonphi-coprocessors-part-1-optimization
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeonphi-coprocessors-part-1-optimization
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://software.intel.com/en-us/articles/requirements-for-vectorizable-
http://software.intel.com/mic-developer

