

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 1 of 67

C-DAC's Medical Informatics SDK Suite v3.1
SDK for HL7 v2.8.2 Tutorials

1. Introduction to SDK for HL7

2. Features of SDK for HL7

3. Programming with SDK FOR HL7

 Basic Configuration

 How to enable logging?

 Working with HL7 Streams

 HL7 Buffer Stream

 HL7 File Stream

 Different operation with Streams

 HL7 Data types

 Data Types defined by HL7 v2.8.2

 Primitive data types

 Composite data types

 Length Constraints

 Parsing and serialization of data types

 Data Type Map and Component Item

 HL7 Segments

 Segments defined by HL7 v2.8.2

 Segment Map and Attribute Item

 Segment creation through SDK

 Segment Factory

 Population of a Segment

 Accessing attributes of a Segment

 Validation of a segment

 HL7 Groups

 Groups defined by HL7 v2.8.2

 Group creation through SDK

 Population of a Group

 Accessing members of a Group

 Validation of a Group

 Segment - Set

 HL7 Parser

 HL7 Serializer

 HL7 Messages

 Messages defined by HL7 v2.8.2

 Message Map and Segment Item

 Message creation through SDK

 Message Factory

 Population of a Message

 Accessing members of a Message

 Validation of a Message

 Source and Recipients

 What is HL7 Source

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 2 of 67

 What is HL7 Recipient

 Capability of Source and Recipient

 HL7 Systems

 Patient Admin System

 Financial Management System

 Claims and Reimbursement System

 Clinical Laboratory System

 Application Management System

 Master Files System

 Materials Management System

 Medical Records System

 Observation Reporting System

 Order Entry System

 Patient Care System

 Patient Referral System

 Personal Management System

 Scheduling System

 Query System

 HL7 Communication

 What is HL7 Communication?

 Configuration of a HL7 transaction initiating system

 User Session

 Configuration of User Session

 Configuration of a HL7 transaction responding system

 Server Session

 Configuration of Server Session

 Client Session

 Configuration of Client Session

 Process communication on initiator side

 Establish connection with responding entity

 Sending HL7 message(event/query) to responder entity

 Process communication on responder side

 Establish connection with requestor entity

 Process received HL7 message(query/event)

 Generate response/acknowledgement

 Minimal Lower Layer Protocol (MLLP)

 What is MLLP?

 Configuration

 How it works?

 Auxiliary and Special HL7 Protocols

 Message/Segments continuation

 Configuration

 Batch Protocol

 Configuration

 Interactive Continuation Protocol

 Configuration

 Query Cancellation Protocol

 Configuration

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 3 of 67

 Process

 Sequence Number Protocol

 Configuration

 Publish-Subscribe Protocol

 Use Case Scenarios

 Configuration of a Publisher

 Configuration of a Subscriber

 Local Extension Protocol

 Introduction to Local Extension Protocol

 Implementation of Locally Extended DataType(Z-DataType)

 Implementation of Locally Extended Segment(Z-Segment)

 Implementation of Locally Extended Message(Z-Message)

 Configuration

 Process communication for Z-Message or Z-Segment

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 4 of 67

Introduction to SDK for HL7

C-DAC’s Medical Informatics Standards Software Development Kit for HL7 is a toolkit that

provides APIs for applications/ medical devices to comply with ANSI/HL7 V2.8.2-2015 Standard.

It is a rapid application development tool which provides high return on investment through cost

effective implementation of the standard.

HL7 is an ANSI accredited standard which was introduced in 1987 by Health Level Seven

organization to overcome the interoperability issues in telemedicine communication. HL7 defines

structure for messages and auxiliary protocols to support telemedicine communication in the form

of event notification and query/response.

Achieving compliance to HL7 standard, for healthcare application, includes overheads because

first it requires a complete knowledge of protocol specifications. Building such a capability from

scratch is time consuming since implementer first need to understand the complexities of standard.

HL7 SDK supports all messages and segments belonging to different health care systems which

are defined in HL7 v2.8.2 for e.g. Patient Admin System, Financial System etc. Along with

different systems HL7 SDK supports different auxiliary protocols which are defined in standard

like Batch Protocol, Message Continuation, and Query Cancellation etc. All components of HL7

SDK are available with proper customization and can be enhanced as per requirements.

 Back to top

Features of SDK for HL7

 Easy to use Object-Oriented implementation of ANSI approved HL7 v2.8.2 standard

 Allows customization or extension by implementing provided interfaces

 Comprehensive Error/Warning Logging capability to assist debugging

 Supports all messages and segments belonging to different systems defined by HL7 v2.8.2.

Systems supported by HL7 SDK are listed below:

o Patient Administration

o Financial Management

o Observation Reporting

o Master Files

o Medical Records

o Scheduling

o Patient Referral

o Patient Care

o Clinical Laboratory Automation

o Application Management

o Personal Management

o Order Entry

o Query

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 5 of 67

o Claims and Reimbursement

o Material Management

 Supports different auxiliary and special protocols defined by HL7 v2.8.2

o Local Extension for Z-Message and Z-Segment

o Batch Protocol

o Message Continuation Protocol

o Query Cancellation Protocol

o Query Interactive Continuation Protocol

o Publish Subscribe Protocol

o Sequence Number Protocol

 Set of API Documentation

 Sample test codes along with the sample test data to demonstrate the capabilities of SDK

 Ready to run Command Line Utilities

 Source Code of SDK and also for Utilities

 Readme and Help document to give assistance to the user while using SDK

 Back to top

How to enable logging?

Log can be generated in HL7 SDK for different events occurred while processing.

The HL7 SDK describes two levels of logging:

SEVERE - At this level of logging any exception’s stack trace is completely logged into a log file.

Along with the stack trace the data that are failed are also logged.

INFO - The failed data elements with status WARNING are logged in the log file.

The logging is done only when the logging mode in ON. Logging can be enabled by calling

enableLogging () method available in HL7Config class. This logging configuration is required

only once in SDK life time. Once logging is enabled, log will be generated for all events which are

occurred after this configuration. Ideally this should be the first statement before using HL7 SDK.

For e.g.:

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 6 of 67

Back to top

HL7 Buffer Stream
HL7BufferStream is to perform reading/writing operations on the byte array. Abstract class

HL7Stream is parent of all stream classes used in HL7 SDK. Applications that need to define the

subclass of HL7Stream must set either the input stream or the output stream before start using the

class.

For e.g.:

Initializing HL7BufferStream for reading operation:

Where, buffer is the byte array.

Initializing HL7BufferStream for writing operation:

Back to top

HL7 File Stream
HL7FileStream is to perform reading/writing operations on the file. Abstract class HL7Stream is

parent of all stream classes used in HL7 SDK. Applications that need to define the subclass of

HL7Stream must set either the input stream or the output stream before start using the class.

Initializing HL7FileStream for reading from file:

// log files will be created in 'C:\HL7_Logs' directory.

HL7Config.createInstance ().enableLogging ("C:\\HL7_Logs");

// If no directory location is defined by user then user’s

//temp directory will be taken as default.

HL7Config. createInstance ().enableLogging ();

HL7BufferStream objHL7BufferStream = new HL7BufferStream ();

ByteArrayInputStream bis = new ByteArrayInputStream (buffer);

objHL7BufferStream.setInputStream (bis);

HL7BufferStream objHL7BufferStream = new HL7BufferStream ();

ByteArrayOutputStream bos = new ByteArrayOutputStream ();

objHL7BufferStream.setOutputStream (bos);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 7 of 67

Back to top

Different operation with Streams
Once HL7BufferStream or HL7FileStream is initialized for reading or writing, all operations can

be performed on it in the similar way, as it is available with basic streams.

For e.g.:

Refer API docs to check different operations available with HL7Stream.

Back to top

Data Types defined by HL7 v2.8.2
HL7 defines data types which work as basic building block to construct or restrict the contents of

data fields of a segment. HL7 SDK supports all data types which are defined by the HL7 v2.8.2

standard. The library contains object-oriented classes for these data types which facilitate easy

creation, validation, read – write mechanisms for these data types. HL7 standard categorizes data

types in primitive and composite forms. HL7 SDK supports all primitive and composite data types

defined by HL7 v2.8.2.

Back to top

String strFilePath = "C:\ABC.HL7";

HL7FileStream hfs = new HL7FileStream ();

FileInputStream fis = new FileInputStream(strFilePath);

hfs.setInputStream(fis);

Initializing HL7FileStream for writing to file:

String strFilePath = "C:\ABC.HL7";

HL7FileStream hfs = new HL7FileStream ();

FileOutputStream fos = new FileOutputStream(strFilePath);

hfs.setOutputStream(fos);

HL7BufferStream objHL7BufferStream = new HL7BufferStream ();

ByteArrayInputStream bis = new ByteArrayInputStream (buffer);

objHL7BufferStream.setInputStream (bis);

//To check availability

objHL7BufferStream.available();

//To close the stream

objHL7BufferStream.close();

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 8 of 67

Primitive data types
Primitive data types defines a specific value and does not include component or sub component.

Primitive data type values do not share state with other primitive data type values. Primitive data

types supported by the HL7 SDK are: DT, DTM, FT, GTS, ID, IS, NM, SI, SNM, ST, TM, TX

and UN.

Primitive data types can be created through provided data type class according to object oriented

programming manner.

For e.g.:

Note: - iMinLength defines minimum length allowed for this data type as per defined in standard,

iMaxLength defines maximum length allowed for this data type as per defined in standard,

strCLength defines Conformance length allowed for this data type as per defined in standard.

iTableNo defines Table number to which the value for the component is specified.

Note: - strValue defines data type value.

Similarly other primitive data types can be used. Refer API docs of specific data type as per

requirements.

Back to top

Composite data types
Composite data types are data types which includes primitive data types and other composite

types. These data types includes components and sub components. The act of constructing a

composite type is known as composition. HL7 SDK supports all composite data types defined by

HL7 v2.8.2 standard. For e.g. AD, CWE, CNE etc.

Composite data types can be created through provided data type class according to object oriented

programming manner.

For e.g.:

//Initialization of DT data type

DT objDT = new DT(iMinLength, iMaxLength, strCLength, iTableNo);

//Setting value to data type

objDT.setValue (strvalue);

//Initializing HD data type

HD objHD= new HD (iMinLength, iMaxLength, strCLength, iComponentType);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 9 of 67

Note: - iMinLength defines minimum length allowed for this data type as per defined in standard,

iMaxLength defines maximum length allowed for this data type as per defined in standard,

strCLength defines Conformance length allowed for this data type as per defined in standard.

iComponentType defines whether this data type is at component level or sub component level. For

component and sub component level constants has been defined in HL7Constants class.

HL7Constants.HL7_COMPONENT;

HL7Constants.HL7_SUBCOMPONENT;

These constants can be used to define iComponentType.

Note: - strNamespaceId specifies the HL7 identifier for the user-defined table of values for this

component. strUniversalId specifies a string formatted according to the scheme defined by the

component. strUniversalIdType governs the interpretation of the strUniversalId. HD data type is

constructed through three primitive data types.

Similarly other data types can be created. Refer API docs of specific data type as per requirements.

Back to top

Length Constraints
Data type in HL7 contains length constraints. HL7 SDK follows these constraints as defined in

HL7 v2.8.2 standard. Length of a data type varies in different segments.

Normative Length –

For some fields or components, the value domain of the content leads to clearly established

boundaries for minimum and/or maximum length of the content. In these cases, these known limits

are specified for the item. Normative lengths are only specified for primitive data types.

Length & Persistent Data Stores –

For many fields or components, the value domain of the content does not lead to clearly

established boundaries for minimum and/or maximum length of the content. In many cases,

systems store the information of these value domains using data storage mechanisms that have

fixed lengths, such as relational databases, and must impose a limitation on the amount of

information that may be stored. Though this does not directly impact on the length of the item in

the instance, nevertheless the storage length has great significance for establishing interoperability.

Truncation Pattern –

For technical and/or architectural reasons, many applications must define a limit to the length that

they will store for a particular item. This creates a need for the length of an element to be defined

somewhere and raises the question of what should happen if a real world value is longer than the

acceptable value. It can be handeled in two ways, First, either the message cannot be constructed

//Setting value to data type

objHD.setNamespaceId(strNamespaceId);

objHD.setUniversalId(strUniversalId);

objHD.setUniversalIdType(strUniversalIdType);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 10 of 67

or must be rejected completely , and Second, for some data items such as names and addresses,

this is generally unwelcome information – the system can still function to some degree in the

presence of truncated data. However truncation of data may have later consequences. For this

reason, when values are truncated because they are too long, the value should be truncated at N-1,

where N is the length limit, and the final character replaced with a special truncation character.

This means that whenever that value is subsequently processed later, either by the system, a

different system, or a human user, the fact that the value has been truncated has been preserved,

and the information can be handled accordingly.

The truncation character is not fixed; applications may use any character. The truncation character

used in the message is defined in MSH-2. The default truncation character in a message is # (23),

because the character must come from the narrow range of allowed characters in an instance. The

truncation character only represents truncation when it appears as the last character of a truncatable

field. It SHALL be escaped if the last character of the data that is the maximum allowable size for

the component is the truncation character.

Example:

For a field with a conformance length of 5 where the content is |1234#| the truncation character is

not representing truncation, it is the actual data.

Conformance Length –

If populated, the conformance length column specifies the minimum length that applications must

be able to store. Conformant applications SHALL NOT truncate a value that is shorter than the

length specified. The conformance length is also the minimum value that maybe assigned to

maximum length in an implementation profile.

In addition, the conformance length may be followed by a “=” or a “#”. The “=” denotes the value

may never be truncated, and the “#” denotes that the truncation behaviour defined for the data type

applies.

Consider the following AD data type, which is a composite data type, this data type specifies the

address of a person, place or organization.

AD – Address:

SEQ LEN C.LEN DT OPT TBL# COMPONENT NAME COMMENTS

1 120# ST O Street Address

2 120# ST O Other Designation

3 50# ST O City

4 50# ST O State or Province

5 12= ST O Zip or Postal Code

6 3..3 ID O 0399 Country

7 1..3 ID O 0190 Address Type

8 50# ST O Other Geographic Designation

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 11 of 67

This Data Type specifies the Street Address has 120# Conformance Length, and the Address Type

can have Minimum Length 1 and Maximum Length 3. For the valid values of the data types, see

the above data type table, “Address Type” component name has its own defined HL7 value table.

While populate it, follow the value specified in the value table.

Back to top

Parsing and serialization of data types
Parsing and serialization of a data type refers to the reading and writing process respectively.

Reading and writing of data types can be done by passing appropriate streams and delimiters

definition.

For e.g.:

Note: - objIHL7Stream refers to the valid input stream for reading and objIDelimiter defines

details of delimiters which can be retrieved during parsing of message header.

Back to top

DataType Map and Component Item
Each DataType in HL7 is defined by a structure containing a sequence of data fields. HL7 SDK

represents this structure in form of DataTypeMap.

DataType Map represents structure of a DataType as per defined in HL7 standard. DataType Map

contains a list of ComponentItem. HL7 SDK represents different data fields of a DataType in form

of ComponentItem. Each data field of a Data Type contains few properties like sequence no. ,

minimum length, maximum length, conformance length, data type, optionality, repeatability, value

table number, component name, as it is shown in example below.

AD – Address:

//Reading of data type

DT objDT = new DT(iMinLength, iMaxLength, strCLength, iTableNo);

objDT.read (objIHL7Stream, objIDelimiter);

//Writing of data type

DT objDT = new DT(iMinLength, iMaxLength, strCLength, iTableNo);

objDT.setValue (strvalue);

objDT.write (objIHL7Stream, objIDelimiter);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 12 of 67

SEQ LEN C.LEN DT OPT TBL# COMPONENT NAME COMMENTS

1 120# ST O Street Address

2 120# ST O Other Designation

3 50# ST O City

4 50# ST O State or Province

5 12= ST O Zip or Postal Code

6 3..3 ID O 0399 Country

7 1..3 ID O 0190 Address Type

8 50# ST O Other Geographic Designation

Similarly ComponentItem can be populated for all data fields of a DataType. Once

ComponentItem of a Data Type is populated, this can be set on DataType.

For e.g.:

Similarly other attributes can be populated and add on DataTypeMap.

Note: - DataType which are defined by HL7 v2.8.2 need not to be populated using above

mechanism because HL7 SDK internally performs this process. This process is required only for

locally extended DataType.

For locally extended datatype refer “Local Extension Protocol”

Back to top

// populating ComponentItem for first attribute of MSA segment.

DataTypeMap objDataTypeMap = new DataTypeMap();

ComponentItem objComponentItem = new ComponentItem();

objComponentItem.setSequenceNo(7);

objComponentItem.setDataType("ID");

objComponentItem.setFieldName("Address Type");

objComponentItem.setOptional(true);
objComponentItem. setMinimumLength(1);

objComponentItem. setMaximumLength(3);

int [] table = new int[1];

table [0] = 190;

objComponentItem.setTableNo(table);

objDataTypeMap.addComponentItem(objComponentItem);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 13 of 67

Segments defined by HL7 v2.8.2
A segment is a logical grouping of data fields. Segments of a message may be required or optional.

They may occur only once in a message or they may be allowed to repeat. Each segment is given a

name. For example, the ADT message may contain the following segments: Message Header

(MSH), Event Type (EVN), Patient ID (PID), and Patient Visit (PV1). Each segment is identified

by a unique three-character code known as the Segment ID. All segment ID codes beginning with

the letter Z are reserved for locally defined segments.

For locally defined segments refer “Local Extension Protocol”.

HL7 SDK supports all segments defined by HL7 v2.8.2.

Back to top

Segment Map and Attribute Item
Each Segment in HL7 is defined by a structure containing a sequence of data fields. HL7 SDK

represents this segment structure in form of SegmentMap.

SegmentMap represents structure of a segment as per defined in HL7 standard. SegmentMap

contains a list of AttributeItem. HL7 SDK represents different data fields of a segment in form of

AttributeItem. Each data field of a segment contains few properties like sequence no. , length , data

type , optionality , repeatability , value table number , item id and element name , as it is shown in

example below.

HL7 Attribute Table - MSA - Message Acknowledgment

SEQ LEN C.LEN DT OPT RP/# TBL# ITEM # ELEMENT NAME

1 2..2 ID R 0008 00018 Acknowledgment Code

2 1..199 199= ST R 00010 Message Control ID

3 W 00020 Text Message

4 NM O 00021 Expected Sequence Number

5 W 00022 Delayed Acknowledgment Type

6 W 00023 Error Condition

7 NM O 01827 Message Waiting Number

8 1..1 ID O 0520 01828 Message Waiting Priority

Similarly AttributeItem can be populated for all data fields of a segment. Once AttributeItem of a

segment is populated, this can be set on SegmentMap.

For e.g.:

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 14 of 67

Similarly other attributes can be populated and add on SegmentMap.

Note: - Segments which are defined by HL7 v2.8.2 need not to be populated using above

mechanism because HL7 SDK internally performs this process. This process is required only for

locally extended segments.

For locally extended segments refer “Local Extension Protocol”.

Back to top

Segment creation through SDK
All segments, which are defined by HL7 v2.8.2, are supported by HL7 SDK. Initialization of

segment can be done through two ways.

Segment Factory:-

Segment Factory represents an instance of a real world Information Object. Segment Factory can

be used to create object of HL7 v2.8.2 defined segments by providing name of segment.

For e.g.:

Note: - For Z-Segment and unknown segment it returns NULL;

Back to top

// populating AttributeItem for second attribute of MSA segment.

SegmentMap objSegmentMap = new SegmentMap ();

AttributeItem objAttributeItem = new AttributeItem ();

objAttributeItem.setSequenceNo(2);

objAttributeItem.setFieldName(“Message Control ID”);

objAttributeItem.setItemID(10);

objAttributeItem. setMinimumLength(1);

objAttributeItem. setMaximumLength(199);

objAttributeItem. setConformanceLength(“199=”);

objAttributeItem.setDataType(“ST”);

objAttributeItem.setRepeatable(false);

objAttributeItem.setOptional(false);

objSegmentMap.addAttributeItem(objAttributeItem);

MSA objMSA = new MSA ();

Or

MSA objMSA = (MSA) SegmentFactory.createSegment(“MSA”);

ISegment objSegment = SegmentFactory.createSegment(“MSA”);

MSA objMSA = (MSA)objSegment;

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 15 of 67

Population of a Segment
Population of a segment can be done either by parsing through stream or manually.

Segment Population through manual process -

Create object of segment and set all attributes in the form of data type attributes which are defined

by HL7 v2.8.2 standard.

Note: - objID, objST and objNM represents data type fields which are defined by MSA segment

structure. For primitive data fields user can use available overloaded methods also. Refer API

docs.

Segment population through parsing -

Create object of segment and populate segment by passing populated input stream and delimiter

definition.

Note: - objIHL7Stream defines populated stream and objIDelimiter defines delimiter definition

which can be retrieved from populated MSA segment.

Back to top

Accessing attributes of a Segment
Different fields of a segment can be retrieved by calling appropriate getter method on segment

object. Refer API docs for available methods on a specific segment.

Note: - objIHL7Stream defines output stream and objIDelimiter defines delimiter definition.

Back to top

Validation of a segment
HL7 defines a structure for each segment in the form of description for different attribute fields.

Each attribute field consists of properties defining optionality and repeatability constraints. HL7

SDK applies validation rules on a segment based on these constraints. Each segment defines its

own validation process which can be used by calling validate() method on Segment.

MSA objMSA = new MSA ();

objMSA.setAcknowledgmentCode(objID);

objMSA.setMessageControlID(objST);

objMSA.setExpectedSequenceNumber(objNM);

MSA objMSA = new MSA ();

objMSA.parse (objIHL7Stream, objIDelimiter);

//writing contents of a segment

objMSA.serialize(objIHL7Stream ,objIDelimiter);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 16 of 67

For e.g.:

Validation call on segment returns status as Boolean value or throws exception if required.

Validation process works as validation modes defined on SDK.

Back to top

Groups defined by HL7 v2.8.2
Groups are logical collection of segments. Collectively these segments represent meaningful

information. For example, Patient Visit Group consists of segments that represent information

regarding a patient’s visit to a healthcare facility. One group can be specified in any number of

messages depending upon the structure of the message.

Back to top

Group creation through SDK
In order to create a Group instance SDK provides a single generic class named Group which

consists of a constructor that accepts the name of the group. Following is a sample code to create a

PATIENT VISIT GROUP.

This creates an empty Group instance.

Back to top

Population of a Group
In order to populate a group instance we can either manually add each segment onto the Group

instance or read the multiple segments from stream. For understanding segments and its creation,

population mechanisms, please refer HL7 Segments.

 Population of a Group manually

objMSA.validate();

IMap objPatientVisitGroupMap = objMessageMap.getGroupMap(EnumSegments.

HL7_GROUP_PATIENT_VISIT);

Group objPatientVisitGroup = new

Group(EnumSegments.HL7_GROUP_PATIENT_VISIT, objPatientVisitGroupMap);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 17 of 67

 Population of a Group from stream

In order to populate a Group through stream we need a serialized stream of HL7

Segments. The stream can be a File or a ByteArray stream. Following is an example

to show parsing of Patient Visit Group.

Note: - objIHL7Stream defines populated stream and objIDelimiter defines

delimiter definition which can be retrieved from populated MSH segment

Back to top

Accessing members of a Group
In order to access different segments of a Group, then there are two ways, either retrieve a

collection of all segments of the Group or retrieve only a particular Segment by using a

SegmentKey.

 Retrieve a collection of Segments from the Group

 Retrieve a single segment from the Group

In order to retrieve any other member of the Group instance, please refer to the API

Docs for Group Class.

Back to top

//Create a Segment instance and populate it

PV1 objSegmentPV1 = new PV1 ();

objSegmentPV1.setAdmissionType(objCWE);

//Create a Group instance and Add a Segment instance onto it

objPatientVisitGroup.addSegment(EnumSegments.HL7_SEG_PV1, objSegmentPV1);

objPatientVisitGroup.parse(objIHL7Stream, objIDelimiter);

ISingleCollection<ISegment> objSegmentCollection =

objPatientVisitGroup.getAllSegments();

PV1 objSegmentPV1 = (PV1)

objPatientVisitGroup.getBySegmentID(EnumSegments.HL7_SEG_PV1);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 18 of 67

Validation of a Group
HL7 defines a structure of a Group that contains a sequence of segments represented by its

conditionality of presence or repeatability. Below is a sample code to validate a Group.

 Retrieve all segments from the Group

 Validate individual segments

Back to top

Segment - Set
SegmentSet represents a list of Segments. It provides required method to operate upon different

segments which collectively represents a HL7 Message. It has a list of segment and methods to

provide the segment from the list.

Back to top

HL7 Parser
The HL7Parser parses the HL7Message and provides a SegmentSet. SegmentSet contains all

segments of a HL7 Message in the same order as they appeared.

To parse a HL7 Message, there are two way to parse, first, provide HL7Stream which gives

ISegmentSet.

ISingleCollection <ISegment> objSegmentCollection =

objPatientVisitGroup.getAllSegments();

for(ISegment objSegment : objSegmentCollection)

{

objSegment.validate();

}

String strFilePath = “C:/ABC.HL7”;

FileInputStream objFileInputStream = new FileInputStream(strFilePath);

HL7FileStream objHL7FileStream = new HL7FileStream();

objHL7FileStream.setInputStream(objFileInputStream);

ISegmentSet objSegmentSet = parse(objHL7FileStream);

Or provide File path which also gives ISegmentSet.

String strFilePath = “C:/ABC.HL7”;

ISegmentSet objSegmentSet = parse(strFilePath);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 19 of 67

Back to top

HL7 Serializer
HL7Serializer serializes the SegmentSet to the stream. SegmentSet is a list of segments which

represents a HL7 message.

To Serialize a SegmentSet, there are two way to serialize, first Serializes the SegmentSet on given

HL7Stream.

Or Serializes the SegmentSet on given file location.

Back to top

Messages defined by HL7 v2.8.2
A Message is the atomic unit of data transferred between systems. It is comprised of a group of

segments in a defined sequence. Each message has a message type that defines its purpose. For

example, the ADT Message type is used to transmit portions of a patient’s Patient Administration

(ADT) data from one system to another. A three-character code contained within each message

identifies its type. The real-world event is called the trigger event. These codes represent values

such as a patient is admitted or an order event occurred.

Back to top

String strFilePath = “C:/ABC.HL7”;

FileOutputStream objFileOutputStream = new FileOutputStream(strFilePath);

HL7FileStream objHL7FileStream = new HL7FileStream();

objHL7FileStream.setOutputStream(objFileOutputStream);

ISegmentSet objSegmentSet = objMessage.getSegmentSet();

HL7Serializer objHL7Serializer = new HL7Serializer();

objHL7Serializer.serialize(objSegmentSet, objHL7FileStream);

String strFilePath = “C:/ABC.HL7”;

ISegmentSet objSegmentSet = objMessage.getSegmentSet();

HL7Serializer objHL7Serializer = new HL7Serializer();

objHL7Serializer.serialize(objSegmentSet, objHL7FileStream);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 20 of 67

Message Map and Segment Item
Message Map class represents a map for Segment Items represent structure of a Message. It

implements IMessageMap interface, which provides Structure for a HL7 Message.

SegmentItem class represents structure of a Segment. It provides the setters and getters to specify

structure for a segment.

Back to top

Message creation through SDK

Back to top

Message Factory
MessageFactory class provides support for creation and population of messages. It creates and

populates supported message according to the available list of Source and Recipient. We can also

create HL7 messages through Message Factory.

Back to top

IMessageMapReader objIMessageMapReader =

MessageMapReader.createInstance(EnumHL7System.HL7_SYSTEM_APPLICATIONM

ANAGEMENT);

IMessageMap obj = objIMessageMapReader.getMessageMap(EnumMessageCode.ADT,

EnumTriggerEvent.A01);

IMessageSource objQuerySource = new QrySource();

Message objMessage = objQuerySource.createMessage(EnumMessageCode.QBP,

EnumTriggerEvent.Q11);

QBP_Q11 objQBP_Q11 = (QBP_Q11)objMessage;

MessageFactory objIMessageFactory = MessageFactory.createInstance();

Message objMessage = objIMessageFactory.createSendSupportedMessage(“QBP”,

“Q11”);

QBP_Q11 objQBP_Q11 = (QBP_Q11)objMessage;

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 21 of 67

Population of a Message
User wants to populate a HL7 message, first create the Message from specific source or recipient.

Then add the populated segment on it.

Where, objMSH is the MSH segment and objSFT is the SFT segment. Similarly user can add more

segments on the message.

Back to top

Accessing members of a Message
If user wants to access the members of Message, then user have two choices, first user can specify

the segment name and get the collection of specified segment,

Or user can get specified segment, if user knows the which method gives specific segment, like,

Here, getSoftwareSegments method gives the SFT segment from the message.

Back to top

Validation of a Message
If user wants to validate the message, then simply calls validate method upon Message.

Back to top

What is HL7 Source
HL7 Source provides the capability to create the HL7 Messages, with respective to their HL7

defined systems.

Back to top

IMessageSource objQuerySource = new QrySource();

Message objMessage = objQuerySource.createMessage(EnumMessageCode.QBP,

EnumTriggerEvent.Q11);

QBP_Q11 objQBP_Q11 = (QBP_Q11)objMessage;

objQBP_Q11.setHeader(objMSH);

objQBP_Q11.addSoftwareSegment(objSFT);

ISingleCollection <ISegment> objCollection =

objQBP_Q11.getSegment(EnumSegments.HL7_SEG_SFT);

objQBP_Q11.getSoftwareSegments();

objQBP_Q11.validate();

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 22 of 67

What is HL7 Recipient
HL7 Recipient provides the capability to create the HL7 Messages, with respective to their HL7

defined systems.

Back to top

Capability of Source and Recipient
HL7 Source and HL7 Recipient can send and receive HL7 messages, but there are some

constraints, Source and recipient are not fully capable to send and receive all HL7 messages.

Following is the difference,

HL7 Source

Can send – Query and Acknowledgement Can receive – Event, Response and Acknowledgement

HL7 Recipient

Can send – Event, Response and Acknowledgement Can receive – Query and Acknowledgement

Back to top

HL7 Systems:-

Patient Admin System
The Patient Administration transaction set provides for the transmission of new or updated

demographic and visit information about patients. Any system attached to the network requires

information about patients; the Patient Administration transaction set is one of the most commonly

used. In general communication, information is entered into a Patient Administration System and

passed to the nursing, ancillary and financial systems either in the form of an unsolicited update or

a response to a record-oriented query.

Back to top

Financial Management System
The Finance chapter describes patient accounting transactions. Financial transactions can be sent

between applications either in batches or online. The patient accounting message set provides for

the entry and manipulation of information on billing accounts, charges, payments, adjustments,

insurance, and other related patient billing and accounts receivable information.

Back to top

Claims and Reimbursement System
Claims and Reimbursement System contains the HL7 messaging specifications to support Claims

and Reimbursement (CR) for the electronic exchange of health invoice (claim) data. This system is

intended for use by benefit group vendors, Third Party Administrators (TPA) and Payers who wish

to develop software that is compliant with an international standard for the electronic exchange of

claim data.

Back to top

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 23 of 67

Clinical Laboratory System
Clinical laboratory automation involves the integration or interfacing of automated or robotic

transport systems, analytical instruments, and pre- or post-analytical process equipment such as

automated centrifuges and aliquoters, decappers, recappers, sorters, and specimen storage and

retrieval systems. The types of information communicated between these systems include process

control and status information for each device or analyzer, each specimen, specimen container, and

container carrier, information and detailed data related to patients, orders, and results, and

information related to specimen flow algorithms and automated decision making.

Back to top

Application Management System
This system had previously been entitled Network Management, and has been renamed to more

accurately describe the purpose of the messages described. This system does not specify a protocol

for managing networks, like TCP/IP SNMP. Rather, its messages provide a means to manage HL7-

supporting applications over a network. Because this chapter was originally named "Network

Management," the messages and segments have labels beginning with the letter "N." These labels

are retained for backward compatibility.

Back to top

Master Files System
In an open-architecture healthcare environment there often exists a set of common reference files

used by one or more application systems. Such files are called master files. These common

reference files need to be synchronized across the various applications at a given site. The Master

Files Notification message provides a way of maintaining this synchronization by specifying a

standard for the transmission of this data between applications.

Back to top

Materials Management System
This Materials Management system defines abstract messages for the purpose of communicating

various events related to the transactions derived from supply chain management within a

healthcare facility. There are two basic types of messages defined in this chapter: inventory item

master file updates, and supply item sterilization messages. The goal of the Inventory Item Master

File Update message specifications is to facilitate the communication of inventory item master

catalog and lot information between applications. Sterilization and decontamination messages in

this system are exchanged between a sterilizer or washer and an Instrument-tracking System. The

main focus of the sterilization and decontamination process is a load or grouping of supply items.

Back to top

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 24 of 67

Medical Records System
This system defines the Medical Document Management (MDM) transaction set. It is also

intended to support the data exchange needs of applications supporting other medical record

functions, including chart location and tracking, deficiency analysis, consents, and release of

information. The main purpose of the medical record is to produce an accurate, legal, and legible

document that serves as a comprehensive account of healthcare services provided to a patient. It

supports transmission of new or updated documents or information about their status. The trigger

events and messages may be divided into two broad categories. One which describes the status of a

document only and the other that describes the status and contains the document content itself.

Back to top

Observation Reporting System
This system describes the transaction set required for sending structured patient-oriented clinical

data from one computer system to another. Common use of these transaction sets will be to

transmit observations and results of diagnostic studies from the producing system (e.g., clinical

laboratory system, EKG system) (the filler), to the ordering system (e.g., HIS order entry,

physician’s office system) (the placer). Observations can be sent from producing systems to

clinical information systems (not necessarily the order placer) and from such systems to other

systems that were not part of the ordering loop. This system also provides mechanisms for

registering clinical trials and methods for linking orders and results to clinical trials and for

reporting experiences with drugs and devices. If the observation being reported meets one or more

of the following criteria, then the content would qualify as a medical document management

message (MDM) rather than an observation message (ORU).

Back to top

Order Entry System
Order Entry System includes the transmission of orders or information about orders between

applications that capture the order, by those that fulfill the order, and other applications as needed.

An order is a request for material or services, usually for a specific patient. Most orders are

associated with a particular patient. The Standard also allows a department to order from another

ancillary department without regard to a patient (e.g., floor stock), as well as orders originating in

an ancillary department (i.e., any application may be the placer of an order or the filler of an

order).

Back to top

Patient Care System
Patient Care System supports the communication of problem-oriented records, including clinical

problems, goals, and pathway information between computer systems. This system describes

healthcare messages that need to be communicated between clinical applications for a given

individual. These message transactions can be sent in either batch or online mode.

Back to top

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 25 of 67

Patient Referral System
The Patient Referral chapter defines the message set used in patient referral communications

between mutually exclusive healthcare entities. These referral transactions frequently occur

between entities with different methods and systems of capturing and storing data. Such

transactions frequently traverse a path connecting primary care providers, specialists, payers,

government agencies, hospitals, labs, and other healthcare entities. The availability, completeness,

and currency of information for a given patient will vary greatly across such a spectrum.

Back to top

Personnel Management System

The Personnel Management transaction set provides for the transmission of new or updated

administration information about individual healthcare practitioners and supporting staff members.

Back to top

Scheduling System
Scheduling System defines messages for the purpose of communicating various events related to

the scheduling of appointments for services or for the use of resources.

Back to top

Query System
Query System defines the rules that apply to queries and to their responses. It also defines the

unsolicited display messages because their message syntax is query-like in nature. The variety of

potential queries is almost unlimited.

Back to top

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 26 of 67

What is HL7 Communication?
HL7 communication is process by which user can send different HL7 Solicited and Unsolicited

messages and receiving of acknowledgment and response for the sent messages.

For successful HL7 Communication between two entities it is mandatory that they should be HL7

compliant. It means that they should be capable of creating message and to send to other entity.

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 27 of 67

Use case Scenarios:

Diagram A:

This describes the scenario where initiating side sends Deferred Query and responding system

generates the Acknowledgment for this query and sends it, after time interval responding system

sends the response to initiating system which gives notification about successful reception of

response by sending ACK to responding System.

Diagram B:

Initiating side sends immediate query and responding side generates the immediate response and

sends it to initiating side.

Diagram C:

Initiating side generates event and sends to responding side in response to that responding system

sends the ACK to initiating side.

Back to top

User Session
User Session is entity which takes initiative for sending Solicited and Unsolicited Messages. This

entity is present at initiator side on which different entities are set like Message Factory which is

having capability of creating and populating of messages. Different interfaces which will redirect

the response received to User Test Code directly. All agents like for Batch handling it requires

Batch agent, for fragmentation of Messages and Segment it requires Fragment Agent.

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 28 of 67

For initiating communication first create User Session.

Back to top

Configuration of User Session
Configuration of User Session for different HL7 Messages,

 For sending of Messages creation and population MessageFactory will be created

which is loaded with source and recipients.

To refer more about Message Factory check for MessageFactory above. This

loaded Message Factory will be set on the User Session.

Message Factory can be set on User Session like this:

 For Batch send by client receives response in form of batch then in this case it will

be redirected to IBatchReceiver which is implemented by user test code. By

implementing this class will be capable to receive batch response. User can provide

his own implementation by implementing interface IBatchReceiver. IBatchReceiver

can be set on User Session like this:

 For Cancellation query send by client received canceled response will be redirected

to ICanceledResponseReceiver which is implemented by User Test Code. User can

provide his own implementation by implementing interface

ICanceledResponseReceiver.

 For Interactive query send by client received interactive response will be redirected

to IInteractiveResponseReciever which is implemented by User Test Code. User

can provide his own implementation by implementing interface

IInteractiveResponseReciever.

UserSession objUserSession = new UserSession();

objUserSession.setMessageFactory(objMessageFactory);

objUserSession.setIBatchReceiver (IBatchReceiver obj IBatchReceiver);

objUserSession.setICanceledResponseReceiver (ICanceledResponseReceiver obj

ICanceledResponseReceiver);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 29 of 67

 As the protocol suggests, after sending the message (event or original mode query)

certain waiting period can be defined for the response/ acknowledgement. If this

time elapses, sender assumes that the destination entity is not reachable and stops

further communication with the destination entity. This can be done as

 Sets Socket read timeout of this session, in milliseconds. With this option set to a

non-zero timeout, Socket will block for only this amount of time if the timeout

expires, a session is closed, and the timeout of 0 will be set as infinite.

 User can set the read and write length for Message of size being send which will be

used at time of fragmentation, According to Write length set it will make fragment

of that size. In case of fragment agent is not set then it is mandatory that write

length should be greater than that of Message being send. These read and write

length can be set as:

 After this initialization process, session can be started by provided destination

entity’s IP address and port on which that entity is listening.

This will connect your client to server with IP address strIP and port as iPort.

Back to top

Server Session
This server session entity acts as responder for various received messages send by initiating

system. This entity also manages the communication with the multiple destination entities. This

will acts as responding system for the various Clients by creating separate client session. Various

interfaces are registered with Server session for receiving special messages. Server session can be

created as,

objUserSession.setIInteractiveResponseReciever (IInteractiveResponseReciever

objIInteractiveResponseReciever);

objUserSession.setWaitPeriod (waiting time);

objUserSession.setTimeOut (itimeout);

objUserSession.setReadWriteLength (int iReadLength, int iWriteLength);

objUserSession.start (strIP, iPort);

ServerSession objServerSession = new ServerSession ();

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 30 of 67

Back to top

Configuration of Server Session
Configuration of Server Session for different Session,

 To receive messages sent by the initiating system and if exception occurs during

communication this interface has to be implemented by User. On Registering this

interface this will be set on Client Session. User can provide his own

implementation by providing implementation to the IProcessHandler. It can be set

on Server session like this:

 As the protocol suggests, after sending the message (event or Original mode query)

certain waiting period can be defined for the acknowledgement. If this time elapses,

sender assumes that the destination entity is not reachable and stops further

communication with the destination entity.

 User can set the read and write length for Message of size being send which will be

used at time of fragmentation, According to Write length set it will make fragment

of that size. In case of fragment agent is not set then it is mandatory that write

length should be greater than that of Message being send. These read and write

length can be set as:

 Sets Socket read timeout of this session, in milliseconds. With this option set to a

non-zero timeout, Socket will block for only this amount of time if the timeout

expires, a session is closed, and the timeout of 0 will be set as infinite.

Back to top

Client Session
This is entity which represents client at server side. It will be created each time when server

connected to client. For each client connection separate data will be kept by using this entity by

setting required agents on it.

objServerSession.setIProcessHandler (IProcessHandler obj IProcessHandler);

objServerSession.setWaitPeriod (waiting time);

objServerSession.setReadWriteLength (int iReadLength, int iWriteLength);

objServerSession.setTimeOut (int itimeout);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 31 of 67

Object of client Session can be received on method onConnect method by using which user can set

different agents on it.

Note: - Here setAgent can be setPublishAgent , setSequenceAgent, setServerSideQCNAgent,

setServerSideQICAgent.

Back to top

Configuration of Client Session
Configuration of Client Session for different Session,

 For Sending and receiving capability of messages it requires source and recipient is

added to Message Factory. This has to load message factory and set the agents as

per requirement. All auxiliary protocols and transaction handling which keeps track

for the incoming and receiving messages will be set by User when it receives Client

Session. This can be set as:

 For Cancellation query send by client will be redirected to ICanceledQueryReceiver

which is implemented by User Test Code. User can provide his own

implementation by implementing interface ICanceledQueryReceiver.

 For Interactive query send by client it will be redirected to

IInteractiveQueryReciever which is implemented by User Test Code. User can

provide his own implementation by implementing interface

IInteractiveQueryReciever.

 For subscription message sent by client it will be redirected to ISubscriptionListener

which is implemented by User Test Code. User can provide his own

implementation by implementing interface ISubscriptionListener.

public void OnConnect(ClientSession objClientSession)

{

//Set agent on Client Session.

objClientSession.setAgent (Agent);

}

objClientSession.setMessageFactory(objMessageFactory);

objClientSession. setICanceledQueryReceiver (ICanceledQueryReceiver

objICanceledQueryReceiver);

objClientSession. setIInteractiveQueryReciever (IInteractiveQueryReciever obj

IInteractiveQueryReciever);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 32 of 67

Back to top

Establish connection with responding entity
For establishing connection with responding entity first it has to configure initiating side i.e. User

Session.

Refer to configure User Session. For sending message from initiating side it has to connect with

responding system so this can be done by providing IP address and port at which Responding

system is present. This can be done as follows:

Back to top

Sending HL7 message(event/query) to responder entity
By the initiating side different HL7 messages can be sent. It may be query, Event, Batch and ACK.

For this user has to create message by source and recipient present.

Refer HL7 Messages.

This can be done as:

Back to top

Establish connection with requestor entity
For establishing connection with requestor entity first it has to Configure Responding side i.e.

Server Session.

Refer link to configure Server Session. For sending message from responding side it has to connect

with initiating system. So, responding system starts to listen on specific port and particular IP

address.

objClientSession. setISubscriptionListener (ISubscriptionListener

objISubscriptionListener);

Objusersession.connect(String strip, int iPort);

objUserSession.sendMessage(Message objMessage);

Collection of different message in the form of batch file can be send as follows:

objUserSession.sendBatchFile(IHl7BatchFile objIHl7BatchFile);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 33 of 67

This can be done as follows:

Where strIP is IP address and iPort is port at which it is listening.

After successful connection with initiating side it creates Client session for that requester entity.

Responding side can set desired configuration on client session like setting different agents and

handling of query by configuring it.

Please refer link configure Client Session

Back to top

Process received HL7 message(query/event)
For processing the received event, batch or Query requester side has to implement the interface

IProcessHandler.

This interface has to register on Server Session and implementing this interface requester entity

will be capable to receive Messages on method,

Same way Batch file can be receive on method

Requester side can process the incoming messages and batch file and it can produce the desired

response or ACK

Back to top

Generate response/acknowledgement
Requester entity processes the incoming message and generates response/acknowledgement as per

the type of HL7 Message. For Event it generates the ACK, for deferred query first it sends the

ACK and then its response. For Immediate Query it directly generates the Response and sends it.

For batch file as per the messages in it will generate ACK and response it sends it in batch or as

single message. ACK can be generated as follows:

For generating ACK it requires two things

1. Message Map

2. Trigger event of message received

Message Map can get by Message Map Reader by creating it as like this:

objServerSession.start(String strIP, int iPort);

OnMessageReceive(ClientSession objClientSession);

onBatchFileReceive(ClientSession objClientSession);

IMessageMapReader objMessageMapReader = MessageMapReader.createInstance();

IMessageMap objMessageMap =

objMessageMapReader.getMessageMap(EnumMessageCode.ACK, null);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 34 of 67

Trigger Event can get from message as like this:

Pass this value for creation of ACK.

Different Segments in it like MSH, SFT, MSA, ERR. Can be populated by meaningful data and

send it to Requester entity.

The overall code looks like:

Response can be generated as follows:

Response can be of two types, Immediate and Deferred it can be decided by Segments QRD and

RCP in which QueryPriority attribute. “D” value denotes for Deferred and “I” denotes as

Immediate.

Response can be generated for Query e.g. for Query QBP_Q11 its Response can be send by

RSP_K11.

So create message RSP_K11 by QryRecipient by providing Message Code and Trigger event as

follows.

String strTriggerEvent = objReceivedMessage.getTriggerEvent();

ACK ackMessage = new ACK(strTriggerEvent, objMessageMap);

public void OnMessageReceive(ClientSession cSession)

{

Message message = cSession.getMessage();

IMessageMapReader objMessageMapReader = MessageMapReader.createInstance();

IMessageMap objMessageMap =

objMessageMapReader.getMessageMap(EnumMessageCode.ACK, null);

String strTriggerEvent = objReceivedMessage.getTriggerEvent();

//Passing this value for creation of ACK.

ACK ackMessage = new ACK(strTriggerEvent, objMessageMap);

ackMessage. setHeader(MSH objMSH);

ackMessage.addSoftwareSegment(objSFT);

ackMessage.setMessageAcknowledgmentSegment(MSA objMSA);

ackMessage.addErrorSegment(objERR);

cSession.sendMessage(ack);

cSession.close();

}

RSP_K11obj RSP_K11 = (RSP_K11) new

QryRecepient().createMessage(EnumMessageCode.RSP, EnumTriggerEvent.K11);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 35 of 67

Add different Segments in it like MSH, SFT, MSA, ERR, QAK, QRD, QRF, DSP with

meaningful data and set all this messages one by one on Message RSP_K11.

E.g.

Back to top

Minimal Lower Layer Protocol (MLLP)

What is MLLP?

The Minimal Lower Layer Protocol (MLLP) is the most common mechanism for exchanging the

HL7 data. MLLP uses the TCP/IP protocol to transfer the data in continuous stream of bytes.

MLLP delimiters are used to recognize the start and the end of message.

MLLP is how you wrap an HL7 message with a start and end to insure you knows where a

message starts, where a message stops, and where the next message starts.

The typical structure of an HL7 message being sent via MLLP is described in the table below. It

contains four parts:

The header is a vertical tab character <VT> its hex value is 0×0b. The trailer is a field separator

character <FS> (hex 0×1c) immediately followed by a carriage return <CR> (hex 0×0d)

These headers and trailers are usually non-printable characters that would not typically be in the

content of HL7 messages.

The structure of an MLLP message is given below

<SB> + <Message> + <EB> + <CR>

<SB> = Start Block. Messages are prefixed with start byte

<Message> = HL7 Message

<EB> = End Block. Messages are terminated with end byte

<CR> = Carriage Return

Default hexadecimal values of MLLP delimiters

<SB> = 0x0B (VT)

objRSP_K11.setHeader(MSH objMSH);

objRSP_K11.setQueryDefinitionSegment(QRD objQRD);

And send this response to requester entity.

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 36 of 67

<EB> = 0x1C (FS)

<CR> = 0×0D (CR)

Configuration -

If user wants to send the HL7 message with MLLP component, then user have to enable MLLP on

UserSession.

And for receiving the HL7 message with MLLP component, then user have to set MLLP on

ClientSession.

How it works?

When user tries to send HL7 Message with MLLP component, MLLP Agent adds its entire

component on the HL7 Message with the help of its agent.

The structure of an MLLP message is given below

<SB> + <Message> + <EB> + <CR>

<SB> = Start Block. Messages are prefixed with start byte

<Message> = HL7 Message

<EB> = End Block. Messages are terminated with end byte

<CR> = Carriage Return

When this message reached on the receiving side, MLLP agent removes its entire component.

If user not set the MLLP at the receiving side, then it will throw exception.

Back to top

Message/Segments Continuation Configuration
Sometimes, implementation limitations require that large messages or segments be broken into

manageable chunks for ease of transmission of Data so here in SDK this term is called as

"fragmentation". This describes how a logical message is broken into one or more separate HL7

messages.

 First, a single segment may be too large. HL7 uses the "ADD" segment to handle

breaking a single segment into several smaller segments.

//Enable MLLP on User Session.

objUserSession.enableMLLP();

//Set MLLP on Client Session.

IMLLP objIMLLP = new MLLP();

objClientSession.setMLLPProcessor(objIMLLP);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 37 of 67

 Second, a single HL7 message may be too large. HL7 uses the DSC segment and

the continuation protocol to handle message fragmentation.

Note: HL7 does not define what "too large" means. Acceptable values are subject to site

negotiations.

Use case Scenarios:

Diagram A:

-Initiating side generates event and sends to responding side but while sending this message it is

broken down in to small chunks if user wants.

-These chunks are received at Server Side and collected all fragments and regenerated message

with help of this chunks.

-Same step is repeated while sending it from server side.

At initiating side:

The default implementation is given by SDK library for IFragmentProcessor in form of

FragmentAgent however user can implement his own behavior by implementing

IFragmentProcessor.

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 38 of 67

Instantiating IFragmentProcessor which handles the fragmentation and de-fragmentation for larger

messages.

This fragment agent who will does the function of fragmentation for the sending message on

network which forms the packet size as specified by user. When it sets the value of Read and Write

length on User Session.

This fragment processor can be set on User Session like this:

At receiving side:

The default implementation is given by SDK library for IFragmentProcessor in form of

FragmentAgent however user can implement his own behavior by implementing

IFragmentProcessor.

Instantiating IFragmentProcessor which handles the fragmentation and de fragmentation for larger

messages.

This fragment agent who will does the function of fragmentation for the sending message on

network which forms the packet size as specified by user. When it sets the value of Read and Write

length on Server Session.

This fragment processor can be set on Server Session like this:

Back to top

IFragmentProcessor objIFragmentProcessor = new FragmentAgent ();

objUserSession.setFragmentProcessor (IFragmentProcessor objIFragmentProcessor);

IFragmentProcessor objIFragmentProcessor = new FragmentAgent ();

objUserSession.setFragmentProcessor (IFragmentProcessor objIFragmentProcessor);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 39 of 67

Batch Configuration
Batch protocol specifies the structure of batch. HL7 Batch transfer is shown as follows.

Use case Scenarios:

Diagram A:

As shown in diagram HL7Batch File is contains HL7 batch inside with two segments FHS and

FTS which is file header and File trailer segment.

Diagram B:

As shown in diagram HL7Batch contains HL7 Messages with two segments BHS and BTS which

is Batch header and Batch trailer segment.

Diagram C:

As shown in diagram HL7 Message contains Different segments like MSH, DSC which is

Message header and Continuation pointer segment.

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 40 of 67

Use case Scenarios:

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 41 of 67

Diagram A:

As shown in diagram initiating system creates the Batch file and sends it to Responding system

which will be analyzed by responding system. Each message will be verified and generates

Response for it which will be added in batch and this is given as batch response to initiating

system. If initiating system has implemented IBatchReceiver so received response on method

OnBatchFileReceive(ClientSession objClientSession).

Diagram B:

User can provide different implementation for IBatchReceiver now all the batch response will be

redirected to implementer of IBatchReceiver on method onBatchReceive(ClientSession

objClientSession).

Creation of Batch: To create batch follow the below steps:

1. Create and populate BHS segment.

2. Create and populate BTS segment.

3. Create a collection of Messages to be placed in HL7 Message Batch.

Please refer link HL7 Messages for creation and population of it.

In this way the HL7 message batch contains Message1 and Message 2.

Creation of Batch File: To create batch follow the below steps:

1. Create and populate FHS segment

2. Create and populate FTS segment.

3. Create HL7 Message Batches to be serialized in Batch File. As just now shown.

4. Create HL7 Batch File using HL7BatchFile class.

BHS objBatchHeader = new BHS();

objBatchHeader.setBatchFieldSeparator('|');

objBatchHeader.setBatchEncodingChars('^','&','~','\\');

objBatchHeader.setBatchControlID("Batch123456");

//code to populate BTS.

BTS objBatchTrailer = new BTS();

objBatchTrailer.addBatchTotals("2");

//create collection of messages.

ISingleCollection <Message> objMessageCollection = new SingleCollection

<Message> ();

objMessageCollection.add(Message1);

objMessageCollection.add(Message2);

IHL7Batch objBatch = new

HL7Batch(objBatchHeader,objBatchTrailer,objMessageCollection);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 42 of 67

Configuration:

The default implementation is given by SDK where user can give his own implementation by

implementing interfaces IBatchProcessor for initiating system

at initiating side:

User can use the default implementation of IBatchProcessor which is BatchAgent. First instantiate

the BatchAgent and set it on User Session.

Configure the User session refer Configure User Session.

Set this agent on User Session like this:

Now initiating side can send batch file with help of User session like this. However user just wants

to send batch then in this case it has to make it in form of batch file and then only it can send this

batch.

After sending batch response received in batch can be get by implementing IBatchReceiver. This

implementer has to set on User Session. In case of batch received then in this case it will be

redirected to onBatchReceive(IHL7BatchFile objHL7BatchFile); on this method. IBatchReceiver

can be set on User session like this.

//Code to populate FHS

FHS objBatchFileHeader = new FHS();

objBatchFileHeader.setFieldSeparator('|');

objBatchFileHeader.setEncodingChars('^','&','~','\\');

objBatchFileHeader.setSubComponentSeparator('!');

objBatchFileHeader.setFileControlID("BatchFile1234");

//code to populate FTS.

FTS objBatchFileTrailer = new FTS();

objBatchFileTrailer.setFileBatchCount("1");

//Created Batch added in Batch File.

objIHL7BatchCollection.add(batch1);

IHL7BatchFile objBatchFile = new HL7BatchFile (objBatchFileHeader,

objBatchFileTrailer, objIHL7BatchCollection);

IBatchProcessor objIBatchProcessor = new BatchAgent ();

objServerSession.setBatchProcessor (objIBatchProcessor);

objUserSession.sendBatchFile (IHL7BatchFile objIHL7BatchFile);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 43 of 67

If any case IBatchReceiver is not set it on Session then in this case last response batch will be

added in collection. User can get the latest batch response by this collection.

Note that only one and last response batch will be stored in collection.

At receiving side:

Receiving side has implemented the interface IProcessHandler. Which has method

OnBatchFileReceive(ClientSession objClientSession) on which user can gets the Batch File.

Receiving side retrieves the batch file and processes the each messages in it and generates the

ACK and Response according to type of Message. Please refer link Generate

response/acknowledgement for processing of Message to generate ACK/Response. The overall

code looks like this:

E.g.

1.Receiving side gets Event, Deferred Query then it will generate Batch file in which ACK for

event and Deferred Query will be added and send. Deferred Response will send in form of batch if

message wants or simple response will be created and send.

2. In case of Immediate Query and Event is received then in this case Batch with ACK for Event

and Response for Query will be created and added to batch which will be send.

Back to top

Interactive Continuation Configuration
The Interactive Continuation Protocol defines the methodology for the intentional transmission of

a large query-response payload over multiple HL7 messages. Without this protocol, the response

would be returned in a single large logical message.

The protocol is called interactive because there is an ongoing dialog between the Client and the

Server. The dialog commences when the Client issues a query for a potentially large amount of

data, but specifies in the RCP-2-Quantity limited request, that only a limited amount of data is to

be returned in each continued response. The Server then returns one response message containing

objUserSession.setIBatchReceiver(IBatchReceiver objIBatchReceiver);

ISingleCollection <IHL7BatchFile> objACKBatchCollectionForFile =

objUserSession.getResponseBatches();

public void OnBatchFileReceive (ClientSession objClientSession)

{

IHL7BatchFile objHL7BatchFile = objClientSession.getBatchFile();

//objHL7Batch now contains batch file received from client system

}

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 44 of 67

data up to the requested quantity. The Client may continue to ask for further subsets of the data

until the entire set is exhausted or may choose to cancel the query.

This use of the term continuation responses in queries should not be confused with its use in

continuing an unsolicited fragmented message. In the case of continuing a response to query the

control is on the side of the querying application and there is an explicit cancellation event. In the

case of continuation of an unsolicited message, the control is on the part of the sending application

and there is no concept of canceling the message transmission.

The default implementation is given by SDK, where user can give his own implementation by

implementing interfaces IClientInteractiveContinuation for initiating system and

IServerInteractiveContinuation for responding system.

Use case Scenarios:

Diagram A:

-As shown in diagram initiating system sends the query of interactive type and sends it to

responding system. With respect to that it sends the ACK and generated the response for this

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 45 of 67

query. First payload response is sent to initiating system and in DSC field it is set that more

response payloads are still remained. Initiating system analyzes the response and generates query

for more payload and responding system sends the Response with setting that no more response

payload is now presenting this way first interactive session ended.

-In one of scenario of Second interactive session for first interactive query when send by initiating

system server sends first payload and set DSC field which says that more response payloads are

present. After analyzing the response initiating system got the required data so it sends cancellation

query for server which closes the interactive session.

At initiating side:

User can use the default implementation of IClientInteractiveContinuation which is

ClientSideQICAgent.

First instantiate the ClientSideQICAgent and set it on User Session.

Configure the User session refer Configure User Session.

Set this agent on User Session like this:

1. After receiving response from the Responding system if received subset of data of

the message is terminated with a DSC segment with the DSC-1-Continuation

pointer set to the appropriate pointer value and the DSC-2 -Continuation type set to

“I”

2. If the Client wishes to receive the next installment, the query is sent again with a

DSC segment following the RCP. The DSC-1-Continuation pointer echoes the

value sent by the Server.

3. The Server continues to send installments in response to the Client’s request until

there is no more data. The end of data is signified by the absence of the DSC

segment OR an empty value in DSC-1-Continuation pointer.

4. If the Client wishes to cancel the query before the end of the data is reached, a

Cancel query is sent.

However user can use the different utility methods provided on Interactive agent to generate

interactive query and cancellation query by Query id of previously send query.

By using this segment set user can generate its own interactive Query.

IClientInteractiveContinuation objClientSideQICAgent = new ClientSideQICAgent();

objUserSession.setClientSideQICAgent(objClientSideQICAgent);

ISegmentSet objSegmentSet =

objClientSideQICAgent.generateInteractiveQuery(String strQueryID);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 46 of 67

Similarly for cancellation of query user can get the Segment Set from agent providing Query id for

Query which has to cancel.

User can handle the Interactive Response on client side by implementing interface

IInteractiveResponseReciever and Set this interface on user session. Whenever for any interactive

response will be received by Client then in this case it will be redirected to method given on this

interface onInteractiveResponseReceive(Message objMessage).

The overall code looks like this:

At receiving side:

User can use the default implementation of IServerInteractiveContinuation which is

ServerSideQICAgent.

First instantiate the ServerSideQICAgent and set it on Client Session.

Configure the User session refer Configure Client Session.

Set this agent on Client Session like this:

Receiving side interactive queries can be handled separately by implementing interface by receiver

called IInteractiveQueryReciever.

Those queries which are interactive will be redirected to method

ISegmentSet objSegmentSet = objClientSideQICAgent. generateCancellationQuery

(String strQueryID);

objUserSession.setIInteractiveResponseReciever(IInteractiveResponseReciever

objIInteractiveResponseReciever);

public void onInteractiveResponseReceive(Message Response)

{

//Received interactive Response.

}

IServerInteractiveContinuation objServerSideQICAgent = new ServerSideQICAgent ();

public void OnConnect(ClientSession objClientSession)

{

objClientSession.setServerSideQICAgent(ServerSideQICAgent

objServerSideQICAgent);

}

onInteractiveQueryReceive(ClientSession objClientSession);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 47 of 67

User can process the message and generates the response and ACK for it.

Please refer link Generate response/acknowledgement. If for this query if multiple response

payload are present then it add the DSC segment set the DSC-1-Continuation pointer to the

appropriate pointer value and the DSC-2 -Continuation type to “I”.

If initiating side is interested for more response payload messages then in this case it will send

another interactive query to responder.

Things to remember:

1. It is mandatory that when library is in STRICT mode then while sending response payload if

QAK Segment is present then it must echo back the value of Message Control ID field received

from the MSH segment of received Message.

2. Query id in case of interactive query is same throughout the session.

Back to top

Query Cancellation Configuration

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 48 of 67

Use case Scenario:

Diagram A:

-As shown in diagram initiating system sends the query to responding system for which it sends

ACK for that. During mean time initiating system sends out the cancellation query which cancels

the response.

-Responding system can send ACK for the query QCN_J01.

Configuration:

Query cancellation is the canceling of send request in the order by sending specific query to

responding entity for which response may already on its way. However client will not be interested

in received response for a query that is cancelled.

The default implementation is given by SDK, where user can give his own implementation by

implementing interfaces IClientQueryCancellation for initiating system and

IServerQueryCancellation for responding system.

At initiating side:

User can use the default implementation of IClientQueryCancellation which is

ClientSideQCNAgent.

First instantiate the ClientSideQCNAgent and set it on User Session.

Configure the User session refer Configure User Session.

At set this agent on User Session like this:

At responding side:

User can use the default implementation of IServerQueryCancellation which is

ServerSideQCNAgent.

First instantiate the ServerSideQCNAgent and set it on User Session.

Configure the Client session refer Configure Client Session.

Set this agent on client Session like this:

IClientQueryCancellation objClientSideQCNAgent = new ClientSideQCNAgent();

objUserSession.setClientSideQCNAgent (objClientSideQCNAgent);

IServerQueryCancellation objServerSideQCNAgent = new ServerSideQCNAgent ();

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 49 of 67

Back to top

Query Cancellation Process
At initiating side:

Cancellation query for canceling response for sent query can be done by special query called QCN.

This query can be generated by Query source.

e.g. QCN_J01 query is to be sent for canceling response of Deferred Query QBP_Q11.

Instantiating QrySource like:

Create message with Message Code QCN and Trigger event J01.

Different Segments can be added in it like MSH, SFT and QID by populating with meaningful

data. Important segment in this message is QID which tells about which query is to cancel.

Where in QID segment in attribute Query Tag set the value of Query id for query whose response

is to be canceled.

This can be shown as:

While generation of Segment Set for making cancellation query you can use the utility method

provided by ClientSideQCNAgent which will return the segment set for it. For that you have to

just pass the Query id for which cancellation query is to send.

This can be shown as:

public void OnConnect(ClientSession objClientSession)

{

objClientSession.setServerSideQCNAgent (objServerSideQCNAgent);

}

QrySource objQrySource = new QrySource ();

QCN_J01 objQCN_J01 = (QCN_J01) objQrySource.createMessage

(EnumMessageCode.QCN, EnumTriggerEvent.J01);

QID objQID = new QID ();

objQID.setQueryTag (String strQueryIdToCancel);

objQCN_J01.setQueryIdentificationSegment (objQID);

ISegmentSet objISegmentSet =

objClientSideQCNAgent.generateCancellationQuery (String strQueryIDtoCancel);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 50 of 67

By this Segment Set you can generate the Cancellation query. For cancellation response if received

at Initiating side then this data will be discarded if intersected in it then User implement interface

ICanceledResponseReceiver and set this on userSession like this:

After receiving cancelled response this will be redirected to method,

At receiving side:

For handling cancellation query separately responding side can implement the interface

ICanceledQueryReceiver.

Set this interface on Client session like this:

Now all valid cancellation queries will be redirected to method of class implemented by this

interface onQueryCancellationReceive(ClientSession objClientSession).

If user has not registered it then in this case it will be given on method

OnMessageReceive(ClientSession objClientSession).

For cancellation query server can send acknowledgment for query.

Please refer link Generate response/acknowledgement.

Back to top

Sequence Number Configuration
For certain types of data transactions between systems the issue of keeping databases synchronized

is critical. An example is an ancillary system such as lab, which needs to know the locations of all

inpatients to route stat results correctly. If the lab receives an ADT transaction out of sequence, the

census/location information may be incorrect. Although it is true that a simple one-to-one

acknowledgment scheme can prevent out-of-sequence transactions between any two systems, only

the use of sequence numbers can prevent duplicate transactions.

1. The sequence number is a positive (non-zero) integer; and it is incremented by one

for each successive transaction.

objUserSession.setICanceledResponseReceiver(ICanceledResponseReceiver

objICanceledResponseReceiver);

onResponseCancellationReceive (Message objMessage);

public void OnConnect(ClientSession objClientSession)

{

//This will set the ICanceledQueryReceiver on Server Session.

objClientSession.setICanceledQueryReceiver(ICanceledQueryReceiver obj

ICanceledQueryReceiver);

}

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 51 of 67

2. The system receiving the data stream is expected to store the sequence number of

the most recently accepted transaction in a secure fashion before acknowledging

that transaction. This stored sequence number allows comparison with the next

transaction’s sequence number.

3. The initiating system keeps a queue of outgoing transactions indexed by the

sequence number. The length of this queue must be negotiated as part of the design

process for a given link. By default the minimum length for this queue is one.

Use case Scenarios:

Diagram A:

-As shown in diagram initiating system sends message with particular Sequence number to

responding system. Now responding system echo backs by incrementing it by 1 and set it to MSA-

14 field.

-While sending response from responding system it starts the sequence number from start and

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 52 of 67

sends it to initiating system which will be increment by 1 and set it to MSA-14 field.

Configuration:

The default implementation of sequence number is given by SDK. Where user can give his/her

own implementation by implementing interfaces ISequenceAgent.

At initiating side:

User can use the default implementation of ISequenceAgent which is InitiatingSequenceAgent.

Instantiate the InitiatingSequenceAgent like this:

So set the queue length like this:

Set the Initial Queue Value like this:

If user wants the Sequence numbering should be applied for all incoming messages and sending

message then start the functionality of this agent.

Now set this InitiatingSequenceAgent on user session.

When initiating system (client side) sent any message with non-zero or positive integer, it keeps

the Sequence number (with the MSH in MSH-13-sequence number) in queue, length of this queue

must be negotiated as part of the design process for a given link. On the next time sequence

number received by receiving system will be incremented by one (by the initiating system) for

each successive transaction by the initiating system.

At receiving side:

User can use the default implementation of ISequenceAgent which is InitiatingSequenceAgent.

Instantiate the InitiatingSequenceAgent like this:

ISequenceAgent objInitiatingSequenceAgent = InitiatingSequenceAgent.createInstance();

objInitiatingSequenceAgent.setQueueLength(int iLength);

objInitiatingSequenceAgent.setInitialQueueValue(int iValue);

objInitiatingSequenceAgent.setStartSequencing(true);

objUserSession.setSequenceAgent(objInitiatingSequenceAgnet);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 53 of 67

Set the queue length like this:

Set the Initial Queue Value like this:

If user wants the Sequence numbering should be applied for all incoming messages and sending

message then start the functionality of this agent.

Now set this InitiatingSequenceAgent on Client session.

Receiving system (server side) stores the sequence number of the most recently accepted

transaction in a secure fashion before acknowledging that transaction. This stored sequence

number allows comparison with the next transaction’s sequence number.

When initiating system (client side) sent any message with 0 (zero) in the sequence number field,

receiving system should respond with response whose MSA contains a sequence number one

greater than the sequence number of the last transaction it accepted in the Expected Sequence

Number field. If this value does not exist, the MSA should contain a sequence number of -1,

meaning that the initial system will use the positive, non-zero sequence number of the first

transaction it accepts as its initial sequence number.

When initiating system (client side) sent any message with -1 in the sequence number field,

receiving system should respond with response contains a sequence number -1 in the expected

sequence number field. The initiating system then resets its sequence number, using the non-zero

positive sequence number for the next transaction it accepts initially.

Back to top

ISequenceAgent objReceivingSequenceAgent = InitiatingSequenceAgent.createInstance();

objReceivingSequenceAgent.setQueueLength(int iLength);

objInitiatingSequenceAgent.setInitialQueueValue(int iValue);

objReceivingSequenceAgent.setStartSequencing(true);

public void OnConnect(ClientSession objClientSession)

{

//This will set the SequenceAgent on Client Session.

objClientSession.setSequenceAgent(objReceivingSequenceAgent);

}

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 54 of 67

Use Case Scenarios for Publish and Subscriber

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 55 of 67

Use case Scenarios:

Diagram A:

-As shown in diagram Publisher is mainly hub which receives data from different initiating system

and subscription request for particular type of data and message. Subscriber is sending message

QSB_Q16 which does registration for particular stream of data to the publisher. Publisher sends

ACK for the same that subscription request is received successfully.

Diagram B:

One initiating system sends the message to publisher for which it sends ACK shows the successful

reception of message ORU_R01.

Diagram C:

On receiving message ORU_R01 it is verified by publisher that whether it matches the data with

subscriber requirement then it publishes all the messages to the Subscriber for all subscriber for

which subscription is received.

Diagram D:

After receiving desired stream of data Subscriber can cancel its subscription towards publisher by

sending cancellation query QSX_J02.which removes all the details whatever have towards

publisher.

Back to top

Configuration of a Publisher
“Publish and subscribe” refers to the ability of one system, the “Publisher”, to offer a data stream

that can be sent to recipient systems upon subscription. In one sense, the entire HL7 unsolicited

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 56 of 67

update paradigm, in which the sender sends out a stream of messages to recipients, is a kind of

publish and subscribe mechanism. Subscriptions to unsolicited updates are established at interface

set-up time when analysts on both sides agree to start sending a stream of data.

Basically publisher is one who possesses and transmits streams of data. The Publisher might be a

mediator or a broker, such as an interface engine. The Publisher is not necessarily the system that

collected the data, but it is the system willing to transmit it.

Subscription is a process/protocol that allows one system to request that prospective data be sent

for a specified period of time, or for an open-ended period of time until further notice.

By taking consideration of current implementation of SDK, it can be viewed as there is Central

Hub which acts as Publisher which receives Subscription message send from the Subscriber.

Subscriber sends its requirement to publisher for particular data, and any other initiating system

which exchange data with Hub i.e. Publisher.

Publisher is mainly HUB so it requires knowledge of any subscription message, subscription

Cancellation message and also sources and recipients to receive message and Process the request.

For understanding of subscription message it requires the Publish agent which tells more about the

message that coming message is Subscription message or Subscription cancellation message.

The default implementation of IPublishAgent is given by SDK. Where as user can provide his own

implementation by implementing interface IPublishAgent.

All subscription and subscription cancellation messages hub can deal it separately by

implementing interface ISubscriptionListener else it will be redirected to method

OnMessageReceive (ClientSession objClientSession) of IProcessHandler.

Now set the implementer of ISubscriptionListener to client session like this:

objClientSession.setISubscriptionListener (ISubscriptionListener obj ISubscriptionListener);

Now all subscription and subscription cancellation message will be redirected to method of

onSubscriptionMessageReceive (ClientSession objClientSession) and onSubscriptionCancel

(ClientSession objClientSession) respectively. Now implementer of ISubscriptionListener can store

all requirement of Subscriber while subscription with its address and remove data related to

subscriber on cancellation of subscription.

Where it is already negotiated about the Subscription message type, Message Query name and at

which port subscriber is listening for message for which it is subscribed for.

Back to top

Configuration of a Subscriber
Subscriber is interested in particular type of Message and wants data of patient whose patient id is

sent to publisher. Now for this it sends Subscription message in form of message QSB_Q16. It is

already negotiated that this message will be used for the subscription of particular request.

file://///repo/docs/ref/HL7%20v2.1/JAVA/cdac/medinfo/sdk/hl725/hl7net/upperlayer/IProcessHandler.html

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 57 of 67

Now subscriber just acts as initiator and sends the subscription message to publisher by Creating

User Session.

For configuration of user session please refer link Configuration of User Session.

Now just sends the subscription message by using user session like this:

Subscription message can be created like this:

Now all the Segments in it can be populated one by one like MSH, SFT, QPD, RCP, DSC.

In QPD segment user can specify the message query name.

For Segment population refer Population of a Segment. In this case in QPD segment in varies data

type user can send the requested data. Now add these populated segments in message and send.

Now all the Segments in it can be populated one by one like MSH, SFT, and QID. In QID segment

user can specify the message query name.

For Segment population refer Population of a Segment. In this case in QID segment in message

Query name user can send the data for canceling particular type of message by this attribute. Now

add these populated segments in message and send.

//Instantiate Query Recipient.

IMessageRecepient objQueryRecepient = new QryRecepient ();

//Creating subscription message QSB_Q16.

QSB_Q16 objQSB_Q16 = (QSB_Q16) objQueryRecepient.createMessage

(EnumMessageCode.QSB, EnumTriggerEvent.Q16);

objUserSession.sendMessage (SubscriptionMessage objMessage);

//Creating subscription cancellation message QSX_J02.

QSX_J02 objQSX_J02 = (QSX_J02) objQueryRecepient.createMessage

(EnumMessageCode.QSX, EnumTriggerEvent.J02);

objUserSession.sendMessage (SubscriptionMessage objMessage);

//Creation of User Session.

UserSession objUserSession = new UserSession ();

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 58 of 67

While subscriber is acting as responding system for the various message which includes the

receiving of those messages for which it has done subscription. This is negotiated between that for

particular IP and Port Subscriber is acting as responding system.

Configuration of Initiating System:

This just act as initiating system which will generate any event which will be sending to Publisher.

For generating and sending this event to publisher it creates User Session like this:

For configuration of user session please refer link Configuration of User Session.

Now just sends the subscription message by using user session like this:

E.g. it has send ORU_R01 to publisher and gets the Acknowledgment for it.

According to this received ORU_R01 this message will be verified by Publisher which is checked

against the requirements of Subscriber and this will be send for each subscriber for which

subscription is received on its respective address by creating separate User Session for which

Subscriber is listening on particular IP and Port which is known and negotiated between Publisher

and Subscriber.

Back to top

Introduction to Local Extension Protocol
HL7 protocol defines extension in specification of message, segment and data type through use of

Local Extension capability. Local extension can be used for things which are not covered by

specifications given by protocol. Extension in segment and message structure should follow the

basic message/segment construction rules which are defined by HL7 standard.

HL7 SDK provides support for extension of message and segment. Through Local extension in

SDK new message/segment can be created and existing message/segment can also be modified.

//Creation of User Session.

UserSession objUserSession = new UserSession ();

objUserSession.sendMessage (Message objMessage);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 59 of 67

Use case Scenarios:

Diagram A:

-As shown in diagram initiating system creates locally extended message ADT_A99 which is kind

of event which will be send to responding system. This responding system generates ACK for this

event and sends it to Initiating system.

-In this way different type of locally extended messages with custom segments can be formed and

send.

Back to top

Implementation of Locally Extended DataType(Z-DataType)
Local extension for DataType includes modification in existing DataType structure or creation of

new DataType. HL7 SDK supports both extensions for a DataType.

In HL7 SDK structure of a DataType is represented by DataTypeMap.

DataTypeMap is a list of ComponentItem. ComponentItem represents different attribute structure

of a DataType.

For more details of DataType structure, DataTypeMap and ComponentItem refer “HL7

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 60 of 67

DataTypes”.

A new datatype can be implemented by populating DataTypeMap. In HL7 SDK once an existing

datatype is modified then it will be considered as a new datatype. For extension of an existing

datatype a new class can be written in which modified DataTypeMap will be used accordingly.

Name of this new datatype should be according to the naming constraints defined by HL7 v2.8.2

standard. New DataType class should be extending from PrimitiveDataType class or Composite

DataType class or implementing IDataType . By extending from DataType class default parsing,

serialization and validation process can be used, else it need to be implemented separately.

Modification in existing segment

SegmentMap modification for existing datatype:-

Note: - DataTypeMapReader works as a factory of DataTypeMap for a specific datatype.

Similarly other ComponentItem can be added or replaced or deleted by specifying appropriate

value for EnumMapModifyMode. Through this process a new DataType can be created by using

structure of an existing DataType.

Creation of New DataType: -

New DataType should be extending from PrimitiveDataType or CompositeDataType class or

implementing IDataType. If it is extending from Primitive class or Composite class then default

parsing, serialization and validation process can be used. If new class is implementing IDataType

all required definitions need to be provided.

//creating DataTypeMapReader instance

IDataTypeMapReader objDataTypeMapReader =

DataTypeMapReader.createInstance();

//Retrieving DataTypeMap for AD DataType

IDataTypeMap objTempDataTypeMap =

objDataTypeMapReader.getDataTypeMap(EnumDataType.HL7_DT_AD.getValue());

//Making clone of DataTypeMap if clone is not created then actual AD datatype map

will be modified.

IDataTypeMap objDataTypeMap = objTempDataTypeMap.clone();

int[] table = new int[1];

table [0] = 8;

//Making a new ComponentItem with proper values.

IComponentItem objComponentItem = new

ComponentItem("simplefield",1,210,"IS",table,true);

//Adding ComponentItem at 4th position in new DataTypeMap.

objDataTypeMap.addComponentItem (objComponentItem, 3,

EnumMapModifyMode.AFTER);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 61 of 67

For population and creation of DataTypeMap refer DataTypMap and Component Item

Back to top

Implementation of Locally Extended Segment (Z-Segment)
Local extension for segment includes modification in existing segment structure or creation of new

segment. HL7 SDK supports both extensions for a segment.

In HL7 SDK structure of a segment is represented by SegmentMap.

SegmentMap is a list of AttributeItem. AttributeItem represents different attribute structure of a

segment.

For more details of segment structure, SegmentMap and AttributeItem refer “HL7 Segments”.

A new segment can be implemented by populating SegmentMap. In HL7 SDK once an existing

segment is modified then it will be considered as a new segment. For extension of an existing

segment a new class can be written in which modified SegmentMap will be used accordingly.

Name of this new segment should be according to the naming constraints defined by HL7 v2.8.2

standard. New Segment class should be extending from Segment class or implementing ISegment.

By extending from Segment class default parsing, serialization and validation process can be used,

else it need to be implemented separately.

Modification in existing segment

SegmentMap modification for existing segment: -

//creating MessageMapReader instance

ISegmentMapReader objSegmentMapReader = SegmentMapReader.createInstance();

//Retrieving SegmentMap for EVN segment

ISegmentMap objTempSegmentMap =

objSegmentMapReader.getSegmentMap(EnumSegments.HL7_SEG_EVN.getValue());

//Making clone of SegmentMap if clone is not created then actual EVN

//segment map will be modified.

objSegmentMap = objTempSegmentMap.clone();

//Making a new AttributeItem with proper values.

IAttributeItem objAttributeItem = new AttributeItem ("simplefield", 2000, 4, 0, 3,

null,"IS", null, true, false);

//Adding AttributeItem at 4th position in new SegmentMap.

objSegmentMap.addAttributeItem (objAttributeItem, 3,

EnumMapModifyMode.AFTER);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 62 of 67

Note: - SegmentMapReader works as a factory of SegmentMap for a specific segment.

Similarly other AttributeItem can be added or replaced or deleted by specifying appropriate value

for EnumMapModifyMode. Through this process a new segment can be created by using structure

of an existing segment.

Creation of New Segment: -

New Segment should be extending from Segment class or implementing ISegment. If it is

extending from Segment class then default parsing, serialization and validation process can be

used. If new class is implementing ISegment all required definitions need to be provided.

If new class is extending from Segment class then SegmentMap need to be populated according to

the structure.

SegmentMap can be populated by populating structure of AttributeItem of a segment. For example

ZL7 segment which contains structure given in table below:

//Population of new SegmentMap

HL7 Attribute Table – ZL7 Segment

SEQ LEN C.LEN DT OPT RP/# TBL# ITEM# ELEMENT NAME

1 0..4 IS R 09999 setID_ZL7

2 0..20 ST R Y 09998 Simple Field

3 0..80 CWE O 09997 Complex Field

Through this way a SegmentMap for a new segment can be implemented.

Back to top

Implementation of Locally Extended Message (Z-Message)
Local extension for message includes modification in existing message structure or creation of new

message. HL7 SDK supports both extensions for a message.

//Population of SegmentMap for ZL7 segment

SegmentMap objSegmentMap = new SegmentMap();

IAttributeItem objAttributeItem = new AttributeItem("setID_ZL7”

,9999,1,0,4,null,"IS", null, false, false);

objSegmentMap.addAttributeItem(objAttributeItem);

objAttributeItem = new AttributeItem("Simple Field", 9998, 2, 0, 20, null, "ST", null,

true, false);

objSegmentMap.addAttributeItem(objAttributeItem);

objAttributeItem = new AttributeItem("Complex Field", 9997, 3, 0, 80, null,

"CWE",null, false, true);

objSegmentMap.addAttributeItem(objAttributeItem);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 63 of 67

In HL7 SDK structure of a message is represented by MessageMap. MessageMap is a list of

SegmentItem. SegmentItem represents properties of a member segment.

For more details of message structure, MessageMap and SegmentItem refer HL7 Messages.

A new message can be implemented by populating MessageMap according to the message

structure. In HL7 SDK once an existing message is modified then it will be considered as a new

message. For extension of an existing message a new class can be written in which modified

MessageMap will be used accordingly. Name of this new message should be according to the

naming constraints defined by HL7 v2.8.2 standard. New Message class should be extending from

Message class or implementing IMessage. By extending from Message class default parsing,

serialization and validation process can be used, else it need to be implemented separately.

Modification in existing message: -

MessageMap modification for existing message

Sample code given below is showing modification in ADT_A01 message and creating new

message ADT_A99 using existing. ADT_A99 message is containing ZL7 segment at the third

position so in from ADT_A99 MessageMap segment from third position is being replaced by ZL7

segment.

//Initializing MessageMapReader for Patient Administration System

IMessageMapReader objMessageMapReader =

MessageMapReader.createInstance(EnumHL7System.HL7_SYSTEM_PATIENTADMINISTR

ATION);

//Retrieving MessageMap of ADT_A01 message.

IMessageMap objTempMessageMap =

objMessageMapReader.getMessageMap(EnumMessageCode.ADT, EnumTriggerEvent.A01);

//Creating clone of MessageMap otherwise MessageMap for existing will

//be modified.

objMessageMap = objTempMessageMap.clone();

//Creating new SegementItem for ZL7 segment

ISegmentItem objZL7SegmentItem = new SegmentItem();

objZL7SegmentItem.setName(UserDefinedSegmentEnumeration.ZL7);

objZL7SegmentItem.setSegmentCardinality(EnumSegmentCardinality.SINGLE_COMPULSA

RY);

//Adding SegmentItem for ZL7 at 3rd position.

objMessageMap.addSegmentItem(objZL7SegmentItem,3,EnumMapModifyMode.REPLACE);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 64 of 67

Note:- MessageMapReader works as a factory of MessageMap for a specific Message.

Similarly other SegmentItem for new segment or group can be added or replaced or deleted by

specifying appropriate value for EnumMapModifyMode. Through this process a new message can

be created by using structure of an existing message.

Population of new MessageMap: -

MessageMap can be populated by populating information of all member segments in terms of

SegmentItem. For example ADT_A99 message which contains structure given in table below:

ADT^A99^ADT_A99: ADT Message

Segments Description Status Chapter

MSH Message Header 2

[{ SFT }] Software Segment 2

ZL7 ZL7 Segment

[PD1] Additional Demographics 3

[{ --- PROCEDURE begin

 PR1 Procedures 6

 [{ ROL }] Role 15

}] --- PROCEDURE end

[PDA] Patient Death and Autopsy 3

//Population of MessageMap for ADT_A99 message

MessageMap objMessageMap = new MessageMap();

ISegmentItem objMSHSegmentItem = new SegmentItem();

objMSHSegmentItem.setName(EnumSegments.HL7_SEG_MSH);

objMSHSegmentItem.setSegmentCardinality(EnumSegmentCardinality.SINGLE_COMPUL

SARY);

objMessageMap.addSegmentItem(objMSHSegmentItem);

ISegmentItem objSFTSegmentItem = new SegmentItem();

objSFTSegmentItem.setName(EnumSegments.HL7_SEG_SFT);

objSFTSegmentItem.setSegmentCardinality(EnumSegmentCardinality.MULTIPLE_OPTIO

NAL);

objMessageMap.addSegmentItem(objSFTSegmentItem);

ISegmentItem objZL7SegmentItem = new SegmentItem();

ObjZL7SegmentItem.setName(UserDefinedSegmentEnumeration.ZL7);

ObjZL7SegmentItem.setSegmentCardinality(EnumSegmentCardinality.SINGLE_COMPUL

SARY);

objMessageMap.addSegmentItem(objZL7SegmentItem);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 65 of 67

Note: - UserDefinedSegmentEnumeration defines enumerated values for name of Z-segments.

This enum implements ISegmentKey interface.

Through this way a MessageMap for a new message can be implemented.

Back to top

ISegmentItem objPD1SegmentItem = new SegmentItem();

objPD1SegmentItem.setName(EnumSegments.HL7_SEG_PD1);

objPD1SegmentItem.setSegmentCardinality(EnumSegmentCardinality.SINGLE_OPTION

AL);

objMessageMap.addSegmentItem(objPD1SegmentItem);

ISegmentItem objGroupSegmentItem = new SegmentItem();

objGroupSegmentItem.setName(EnumSegments.HL7_GROUP_PROCEDURE);

objGroupSegmentItem.setSegmentCardinality(EnumSegmentCardinality.

MULTIPLE_OPTIONAL);

objGroupSegmentItem.setIsGroup(true);

{

MessageMap objMessageMapInGroup = new MessageMap();

ISegmentItem objPR1SegmentItem = new SegmentItem();

objPR1SegmentItem.setName(EnumSegments.HL7_SEG_PR1);

objPR1SegmentItem.setSegmentCardinality(EnumSegmentCardinality.SINGLE_COMPU

LSARY);

objMessageMapInGroup.addSegmentItem(objPR1SegmentItem);

ISegmentItem objROLSegmentItem = new SegmentItem();

objROLSegmentItem.setName(EnumSegments.HL7_SEG_ROL);

objROLSegmentItem.setSegmentCardinality(EnumSegmentCardinality.

MULTIPLE_OPTIONAL);

objMessageMapInGroup.addSegmentItem(objROLSegmentItem);

objGroupSegmentItem.setGroupItems(objMessageMapInGroup);

}

objMessageMap.addSegmentItem(objGroupSegmentItem);

ISegmentItem objPDASegmentItem = new SegmentItem();

objPDASegmentItem.setName(EnumSegments.HL7_SEG_PDA);

objPDASegmentItem.setSegmentCardinality(EnumSegmentCardinality.SINGLE_OPTIO

NAL);

objMessageMap.addSegmentItem(objPDASegmentItem);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 66 of 67

Local Extension Configuration
Locally extended segments and messages should be registered on LocalExtensionAgent for

working in HL7 communication.

If a Z-Segment or Z-Message is not registered with LocalExtensionAgent or LocalExtensionAgent

itself not available then new Z-segment/Z-message can not be processed.

Registration Process: -

Note: - strSegmentName defines name of Z-Segment.strQualifiedName defines qualified name for

segment so that object can be initialized.

Note: - strMsgCode defines message code for message.strTriggerEvent defines trigger event for

message.strQualifiedname defines qualified name for message so that object can be initialized.

Back to top

Process communication for Z-Message or Z-Segment
For Z-Segment parsing HL7Parser should have knowledge of segment. This knowledge can be

given to HL7Parser through LocalExtensionAgent. Z-Segment should be registered with

LocalExtensionAgent and this agent should be set on HL7Parser.

Note: - strSegmentName defines name of Z-Segment.strQualifiedName defines qualified name for

segment so that object can be initialized.

//Initializing LocalExtensionAgent

LocalExtensionAgent objLocalExtensionAgent = new LocalExtensionAgent();

//Registration process of segment

objLocalExtensionAgent.registerSegment(strSegmentName, strQualifiedName);

//Registration process of message

objLocalExtensionAgent. registerMessage(strMsgCode,strTriggerEvent,

strQualifiedName)

//Initializing LocalExtensionAgent

LocalExtensionAgent objLocalExtensionAgent = new LocalExtensionAgent();

//Registration process of segment in java

objLocalExtensionAgent.registerSegment(strSegmentName, strQualifiedName);

//Initializing HL7Parser and setting LocalExtensionAgent

HL7Parser objHL7Parser = new HL7Parser();

objHL7Parser.setLocalExtensionAgent(objLocalExtensionAgent);

High Performance Computing - Medical and Bioinformatics
Applications Group
© Center for Development of Advanced Computing (C-DAC)

Page 67 of 67

To provide space for Z-Segments and Z-Messages in communication LocalExtensionAgent which

contains knowledge should be set on MessageFactory.This factory should be set on UserSession

and ServerSession while configuring session for communication.

For e.g.:

Back to top

//Initializing LocalExtensionAgent

LocalExtensionAgent objLocalExtensionAgent = new LocalExtensionAgent();

//Registration process of message

objLocalExtensionAgent.registerMessage("ADT","A99","cdac.medinfo.sdk.hl7282.hl7net

.testnetwork.localmessages.ADT_A99");

//Registration process of segment

objLocalExtensionAgent.registerSegment("ZL7","cdac.medinfo.sdk.hl7282.hl7net.testnet

work.localmessages.ZL7");

//Configuring MessageFactory for LocalExtensionAgent

MessageFactory objMessageFactory = MessageFactory.createInstance();

objMessageFactory.setLocalExtensionAgent(objLocalExtensionAgent);

