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SUMMARY 
 
Depth extrapolation equation used for seismic migration is 
often solved by finite-difference technique. The most 
commonly used migration method is based upon the Crank-
Nicolson implicit scheme. Some modifications to this scheme 
are in practice which improve the impulse response of the 
migration operator. In this paper we propose a different 
approach where the wavefield is  approximated by cubic 
spline function. The approximation to second derivative 
resulting from  this approach is similar to that of the 1/6th 
trick of Claerbout. There is another spline parameter θ which 
controls the nature of impulse response. The scheme is 
unconditionally stable for 0 5 10. .≤ ≤θ . As the value of θ 
increases the dispersed evanescent energy gets more and 
more attenuated. The method is demonstrated by calculating 
the impulse response and by applying it to a synthetic data 
set. 
 
INTRODUCTION  
 
Seismic migration is a key step in imaging of the 
underground geological structures. For laterally varying 
velocity structures, the methods based upon the parabolic 
approximation (Claerbout 1985) of the wave equation are 
most common in use. Several migration methods have been 
proposed which use finite-difference approximation to the 
one way wave equation for downward extrapolation of the 
wavefield. Both implicit (Claerbout, 1985) and explicit 
(Hale, 1991) methods are in practice. Explicit methods need 
special care in their implementation because of the stability 
criteria, whereas implicit methods are unconditionally stable. 
In this paper we have developed an implicit scheme for the 
depth extrapolation of seismic wavefield using cubic spline 
approximation. The first part of the paper gives a 
mathematical description of the method. Next we 
demonstrate the usefulness of this method by showing the 
impulse responses. The method is finally tested by applying 
it to a synthetic data set, followed by discussion and 
conclusions. 
 
MATHEMATICAL FORMULATION 
 
Wave extrapolation equation, which is accurate for migrating 
dips upto 45 degree is derived from the dispersion relation 
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where ω is the angular frequency, v is the wave velocity and 
kx  and kz  are horizontal and vertical wavenumbers 

respectively. For 45 degree accuracy α and β are 0.5 and 
0.25 respectively. Accuracy for larger dips can be obtained 
by choosing α and β in some optimal way (Yilmaz, 1987). In 
terms of the retarded wavefield (Claerbout 1985) the 
differential equation resulting from the diffraction term is 
given by 
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where m = (ω/v) and i is the square root of negative one. The 
other term called thin lens term is solved analytically. 
Equation (2) is usually solved using some finite difference 
approximation. Here we present a different approach for 
solving equation (2). Rewrite equation (2) as 
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Now approximating z derivative by forward difference 
approximation and (∂ ∂2 2Q x ) by second order derivatives 

( Mj
n ) of cubic spline function S x∆ ( )  (where ∆ is mesh 

interval) interpolating Q j Jj
n( , , ,..... )= 0 1 2 , we get 
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where, θ ∈[0,1]  is a cubic spline parameter and ∆z is 
increment in z-direction. 
 
Now the continuity condition for second order derivative of 
cubic spline function S x∆ ( )  (Ahlberg et. al., 1967) gives 
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Approximation of the second derivative by the expression 
given in (6) is the same as that of the 1/6 trick of Claerbout 
(1985). He calls it a less obvious expression that offers more 
accuracy at less cost, without giving an explanation for the 
derivation of the expression used. Here we have derived it by 
approximating the wavefield by cubic spline function 
approximation. This approximation gives better results 
because cubic splines provide better approximation to a 
given function (Ahlberg et. al., 1967). Now substituting Mj

n  

from equation (6) in equation (4),  and multiplying by 

( )( )∆z x1 62+ δ , we obtain 
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Using (7) in (8) we obtain after some algebraic 
manipulations 
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Figure 1: Impulse response of migration algorithm for different values of θ. N
as the value of θ increases. Steep dips are also attenuated with the increase in
0 6
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Equation (9) is a tridiagonal system of equation. The solution 
of (9) gives the wavefield at depth (n+1) in terms of the 
wavefield at depth (n). This implicit scheme is 
unconditionally stable for 0 5 10. .≤ ≤θ . Absorbing boundary 
conditions are used on the sides of the model. 
 
IMPULSE RESPONSE 
 
In order to test the extrapolation method described above, a 
45 degree migration program was developed. The input to 
the migration program was a section containing three band 
limited Ricker wavelets in the centre of the section. The 
dominant frequency of the wavelets was 30 Hz. Spatial 
sampling of 8m and a sampling rate of 2ms was used. The 
migration of this data set yields the impulse responses shown 

in Figure 1 for different values of θ. For θ = 0.5 one can 
observe a large amount of dispersed evanescent energy. Also 
at steep dips there is dispersion of low and high frequencies. 
For θ = 0 55.  the dispersed evanescent energy has been 
attenuated to a great extent. Also all the dips are correctly 
positioned. For θ = 0 6. and θ = 0 7. the dispersed evanescent 
energy is further reduced. Steep dips are also attenuated, but 
the remaining dips are correctly positioned along concentric 
semicircles. One has to decide on an optimal choice for θ, 
which reduces the undesired evanescent energy as well as 
correctly positions all the required dips. θ = 0 6. seems to be 
the best choice from the practical point of view. 
 
SYNTHETIC DATA EXAMPLE  
 
Next we applied the migration method based upon the cubic 
spline approximation to a synthetic data set. The velocity 
model used for generating the synthetic data is shown in 
Figure 2. The model comprises of a weathered layer on top of 
a dipping layer and a graban like structure. Synthetic 
seismograms were calculated for this model for 46 source 
positions with a source interval of 50m and a receiver 
interval of 25m. A higher order finite difference modelling 
algorithm based upon acoustic wave equation was used with 
a grid spacing of 5m. A Ricker wavelet with a dominant 
frequency of 30Hz was used as the source function. 
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Figure 2: Velocity model used for the generation of synthetic 
data set. 
The acoustic wave modelling code was implemented in a 
distributed computing environment using PVM (Parallel 
Virtual Machine) message passing calls (Geist et. al. 1994). 
For both, modelling and migration examples presented in 
this paper we have used 8 UltraSparc Workstations 
networked using a fast ethernet switch. This is a part of the 
facility called PARAM OpenFrame. Each UltraSparc 
Workstation has a 200 MHz CPU with 128 MB of RAM and 
Solaris operating system. 
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Figure 3: A CDP stacked section of the synthetic data set. 
 
A CDP stacked section of the synthetic data set is shown in 
Figure 3. Next this stacked data set was migrated using the 
above algorithm. The migrated output sections for two 
different values of θ are shown in Figure 4. On both the 
migrated sections all the events are properly imaged. One 
can notice that for θ = 0 5. there is more evanescent energy 
on the migrated section as compared to the migrated section 
with θ = 0 6. . A user can decide on the appropriate value for 
θ. 
 
DISCUSSION AND CONCLUSIONS 
 
In this paper we have developed and demonstrated an 
implicit scheme for the depth extrapolation of the seismic 
wavefield using cubic spline approximation. The 
approximation to the second derivative is derived from the 
continuity condition for the second order derivative of cubic 
spline function. The difference approximation to the one-way 
wave equation resulting from this approach has another 
spline parameter θ, which controls the dispersed evanescent 
energy. As the value of θ increases more and more 
evanescent energy gets attenuated. Steep dips also get 
attenuated with increase in the value of θ. A proper choice of 
this parameter helps in reducing the undesired noise on the 
migrated sections. This approach can be easily incorporated 
in 2D prestack migration algorithm as well as in 3D prestack 
and poststack migration algorithms. 
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Figure 4: The migrated seismic sections of the stacked data 
shown in Figure 3 for θ = 0 5. and θ = 0 6. . Notice the 
reduction in evanescent energy for θ = 0 6. . 
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