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Abstract  
 
In This article we have discussed about the wave equation based imaging 

techniques using parallel computing. The mathematical formulation of extrapolation 

equation for ω-x migration is given. Parellel Implementation of 3D ω-x migration is 

discussed in detail. Impulse response is shown as an example.   

 
Introduction  
 
Seismic imaging techniques occupies significant role in the structural delineation. It 

gives high resolution picture of earths subsursace. Current advances in 2D and 3D 

data acquisition have increased the input data volume by several folds. Processing 

methods have also changed for high resolution processing which amounts to an 

increase in the computational efforts that is beyond the scope of currently available 

serial architecture machines. As there is an explosion in the processing power of 

computers, there is an explosion in the requitements as well. All over the world it 

has been realized that parallel processing is the only answer to this challenge and it 

is fortunate that seismic data processing is an ideal application for parallel 

architecture machines.  

 
Wave equation based methods (Phadke et. al., 1998) are widely recognized in the 

industry as more accurate while providing finer detailed geological features then 

other conventional methods. However, the wave equation based methods are 

computationally more expensive but suitable for currently available parallel 

computers. 

 

Wave Equation Based Imaging  

 
Seismic data acquisition involves recording the wavefield at the Earth’s surface by 

the sensors placed along a line or in an aerial pattern. This recorded wavefield is 
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used as an initial condition or boundary condition for seismic migration. The 

extrapolation of the recorded wavefield is governed by the wave equation. The two 

most important steps in migration are extrapolation and imaging. Extrapolation 

involves numerical reconstruction of the wavefield at depth from the wavefield 

recorded at the Earth’s surface. Imaging is the process that allows one to obtain the 

local reflection strength from the extrapolated data in depth and create an image of 

the subsurface reflectors. 

 
Poststack migration methods are applied to zero-offset data and are based upon 

the exploding reflector concept. Migration can be performed in time or in depth. In 

the presence of strong lateral velocity variations, time migration followed by time to 

depth conversion does not image the reflected energy to its true subsurface 

position. Depth migration is essential in these cases. Depth migration compensates 

for ray bending, lateral velocity pull-ups and structure. A natural advantage of depth 

migration is that the output image is displayed in depth and therefore can directly be 

utilized for geologic interpretation 

 
One-way wave equation for downward extrapolation of the wavefield in 3D is 

derived from the 3D acoustic wave equation 
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A Fourier transformation with respect to x, y, z and t gives us the 3D dispersion 

relation 
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By keeping only the negative square root term and taking an inverse Fourier 

transform with respect to z, we obtain one-way wave equation in 3D 
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One way wave equation in ω-x domain is derived by first approximating the square 

root and then taking an inverse Fourier transform with respect to x and y. Using  

 X
k v

and Y
k vx y= =

ω ω
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the square root term in (2) can be approximate by (Brown, 1983) 

 R X Y= − + − −1 1 12 2                 (5) 
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Following (Bunks, 1992), we can write the equation (5) as  
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where ρ, α and β will be determined by solving an optimisation problem. 

A 45 degree approximation to (6) given by 
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Now substituting (7) in (2) and using the definition of retarded wavefield (Claerbout, 

1985) , we obtain the one-way depth extrapolation equation in 3D 
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         Thin Lens Term                      Diffraction Terms 

Thin lens term has a straightforward analytic solution, whereas diffraction terms are 

solved by finite difference method using a splitting technique. The splitting method 

for solving the diffraction term is also called onepass migration method. This method 

works very well for handling strong lateral velocity variations.  

 

For the one pass method the field is downward continued alternately along the x 

and y directions for each depth step. The differential equations in ω-x domain for 

downward continuation in x and y directions are given by 
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The imaging part is again the summation of all the frequencies at t=0 at each depth 

step.  

 P x y z t P x y z( , , , ) ( , , , )= = ∑0 ω
ω

                (11) 
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Parallel Implementation of Migration Algorithm  

 
The depth migration algorithm in ω-x domain is inherently parallel in terms of 

frequencies. The parabolic approximation of the wave equation in frequency-space 

domain has decomposed the wave field into monochromatic plane waves that are 

propagating downwards. Therefore, each frequency harmonic can be extrapolated 

in depth independently on each processor and there is no need of intertask 

communication. One can introduce parallel task allocation into each frequency 

harmonic component with the ultimate goal being to have as many processors as 

frequencies. At each depth step all frequency components after extrapolation are 

summed up (Imaging Condition) to give the migrated image. Computations, 

communications and I/O are overlapped in order to achieve the efficiency and 

speed. 

 

The migration codes are analogous to a client-server system, where there is one 

client with multiple servers. One can also think of it as Master-Worker system where 

Master works as the manager and assigns tasks to his Workers. The job of the 

Master is to provide the required parameters and data to all the workers and 

distribute workload properly, so that idle time of the workers is minimum. Also at the 

end Master should collect the finished work from all the workers, compile it and 

store it in a proper manner. One of the processors acts as Master and the Worker 

tasks are assigned to different processors.  

 

A flow chart of the parallel implementation is shown in Figure 1. The figure only 

shows one Master task and one Worker task, but in reality there are many Worker 

tasks. All the Worker tasks communicate with Master task in an identical fashion as 

shown in the figure. For communication between Master and Worker, i.e. in order to 

exchange data between Master and Workers over the network, we make use of 

message passing model called PVM (Parallel Virtual Machine) / MPI (Message 

Passing Interface). The PVM/MPI systems are the software frameworks for 

concurrent computing in a networked environment. The PVM (Geist et. al., 

1994)/MPI(Pacheco, 1997) models are the set of message passing routines which 

allow data to be exchanged between tasks by sending and receiving messages. 

The messages are coded with origin, destination and identification tags in order to 

avoid any mix up during network transmission. 
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Figure 1 : Flowchart of the ω-x migration algorithm 

 

Impulse Response   

 
The horizontal slices of the 3D impulse response of the migration operator for 45 

degree approximation are shown in Figure 2. 

Initiate Master Task 
and Spawn Worker tasks 

Worker Task 

Read all the Parameters 
and Send it to Workers 

Read and Distribute Fourier 
Transformed data to Workers  

Start loop over Depth steps 
n = 1, ....., N 

Receive Partially Imaged 
Data from all the Workers 

and Perform Imaging 
for Depth n∆z 

Write the Migrated Results 
and Exit Master Task 

Receive all the Parameters 
From Master 

Start loop over Depth steps 
n = 1, ......., N 

Extrapolate the Wavefield 
for all the assigned frequencies 

( Use 2D or 3D Downward 
Extrapolation Equations )  

Perform Partial Imaging 
by summing over all the 
Assigned Frequencies 

Exit Worker Task  

If  n < N If  n < N  
 YES  YES 

 NO  NO 

Receive Assigned Part of 
the data i.e.Number of frequencies 

to be migrated on the worker 
( Frequencies are evenly distributed 

to all the Workers ) 

Send Velocity Data 
for Depth n∆z 

Receive Velocity Data 
for Depth n∆z 

Send Partially Imaged Data 
to Master 



 6 

  

Figure 2 :  Horizontal slices at different depths for the 3D impulse response of the 

migration operator. 

 
In order to calculate the impulse response of the 3D migration operator shown in 

Figure 2, a bandlimited Ricker wavelet with a dominant frequency of 30 Hz was 

used. The other parameters are ∆ ∆ ∆ ∆x m y m z m t Nx= = = = =5 0 5 0 2 0 0 002 251. , . , . , . sec, ,  

and  Nz = 120.  

 
Conclusion 
 
The discussed ω-x depth migration method images the earths subsurface very well 

even when there are lateral velocity variations. So, in the case of continental margin 

boundary delineation, where there may exist sharp lateral velocity variations, this 

method can be used for high resolution imaging. Parallel implementations have 

been carried out on PARAM 10000 using PVM (Parallel Virtual Machine) & MPI 

(Message Passing Interface) message passing libraries. Use of PVM / MPI enable 

the portability of the software across various parallel machines. 
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