
OpenStack Installation (Icehouse)

OpenStack
OpenStack is a most prominent open-source middle ware software for cloud computing.

OpenStack is driven and supported not only large open-source community but also by large number
of big commercial players like Redhat, HP etc. OpenStack is primary used to deploy infrastructure-
as-service and consist of many technologies like networking, storage, compute and all these
technologies are integrated under the one umbrella, called as OpenStack as shown in figure 1.

Fig. 1 OpenStack Architecture

Features
OpenStack is enriched collection of many features. OpenStack is developed with an idea

modular approach and each module is a separate project. These modules work as separate and ease
to plug and play with other software stack of OpenStack. OpenStack support all type of hardware
and also support private, public and hybrid cloud. OpenStack software access and controls large
number of compute, storage (object and block), and networking resources throughout a center and
simply managed through a web interface or via the OpenStack access API. OpenStack also works
with many popular enterprise and open source technologies making it ideal for heterogeneous
infrastructure.

Component
They are many modules, which are provides with different version of openstack and we

have also used many modules but we have discuss only few important modules only, which are
used in to form our private cloud.

 Compute
Compute play an important role in formation of private cloud. On compute side OpenStack
provides and enable the large support for virtualization. OpenStack support all type of hardware,
software and even heterogeneous environment with no proprietary issue. OpenStack support
multiples hypervisors in a virtualized environment. Both KVM and Xen are most popular choices
for hypervisors. Now days, openstack extend its support Linux Container technology, LXC, where
users wish to minimize virtualization overhead and achieve greater efficiency and performance.

 Storage
Storage is very important part of private cloud; OpenStack provides and support various type of

storage from simple storage like for image to very high level Storage like object Storage. Majorly
two type of storage are used into our private cloud.

 Object Storage
 Object Storage [5] is very cost effective and having scale-out architecture. It provides a fully
distributed and having API based accessible methods, that can be integrated or directly used into an
applications and also used for various purpose like backup, archiving and data retention. Storage
can be scale horizontally simply by adding new storage nodes. In case of a node or hard drive fail,
openstack replicates its content to the other active nodes at different locations in the cluster.
Because OpenStack having inbuilt capability and logic to ensure the data replication and
distribution across different nodes, for this purpose inexpensive commodity hard drives and servers
can be used.

 Block Storage
Block Storage is one of the best and ease of use among all the available storage methods

provides by the openstack. Block Storage allow us to connect storage as an external hard disk,
which we can use as a plug & play device, with a compute instance for better performance and
integration with enterprise storage platforms. Block storage is best suit for where data will be used
by various compute instances for different purpose such as database storage, expandable file
systems, or providing a server with access to raw block level storage. If in a case, Block Storage is
not in use than take a snapshot of that block storage for backup data. Block Storage having great
facility of snapshot and restore back when needed again.

 Network
OpenStack Networking is a scalable, plug-gable and easily access through API for managing

network devices and IP addresses. Like other component of the cloud computing, it will be
controlled by the administrator with little user control or access. User will access the cloud
resources within the access policy, define by the administrator. OpenStack provides full support
with different variant and vendors. OpenStack Networking, software define networking (SDN), is
supported by the world best known networking vendors such as Cisco, dell etc. OpenStack ensure
the network will not be the bottleneck or limiting factor while access and deploy of the cloud.

Implementation
OpenStack offers highly modular architecture that offer great support and easy

implementation. OpenStack can be implement in various form ranging from single level machine to
multi nodes cluster(Three-node architecture). We have implement both type of architectures.
Basically, Single level machine installation we had used for demo purpose and multi nodes cluster
installation for the production cloud. In this paper we are discussed about the multi nodes
architecture.

 Pre-installation Requirement
As discussed above, we had installed multi nodes architecture and minimum three nodes are

required. Basically, for multi nodes installation there is not such hard hardware requirements.
 Controller Node: 1 processor, 2 GB memory, and 5 GB storage and 2 NIC.
 Network Node: 1 processor, 512 MB memory, and 5 GB storage and 3 NIC.
 Compute Node: 1 processor, 2 GB memory, and 10 GB storage and 2 NIC.

 To synchronize the cluster's, we to setup NTP server and controller nodes will act as NTP server
and in rest network and other compute nodes would be synchronize with the controller node and

also all the nodes in the cluster except controller node having mysql client service and on controller
mysql databases has been installed. Controller Node also contains the messaging server for passing
message across the nodes and we have used the RabbitMQ server.

 Installation
As discussed previously, openstack provided more facility and option for installation, openstack

as per user hardware availability. OpenStack will be installed to single system and also to form
clusters. We have implement multi nodes installation architecture, in which minimum three nodes
will be required. One node act as Controller Node, Second node act as Network Node and rest
nodes work as Compute and other Server as shown in figure 2.

Fig 2. Shown the Service running at the nodes

Step 1: Configure the Keystone (Identity Service)
Keystone is a one of major project in the OpenStack software stack. Keystone provides

Identify, Token, Credential, Catalog and Policy related to OpenStack. Keystone performs user
management and service catalog. User management consists user's permission and tracking while
service catalog consists availability of services with their API endpoints. All the installation done at
Controller Nodes (10.208.X.X):

 Install the keystone

 # apt-get install keystone

 Open the Configuration file keystone.conf and add database connection in database section and
other entries

 # vi /etc/keystone/keystone.conf
[database]
connection=mysql://keystone:keystone123@10.208.X.X/keystone
[DEFAULT]
A "shared secret" between keystone and other openstack services
admin_token = admin123

log_dir = /var/log/keystone

 Create keystone database

$ mysql -u root -p
mysql> CREATE DATABASE keystone;
mysql> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'10.208.X.X' IDENTIFIED

BY 'keystone123';
mysql> GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' IDENTIFIED BY

'keystone123';
mysql> exit

 Create the schema

su -s /bin/sh -c "keystone-manage db_sync" keystone

 Restart the Keystone services

service keystone restart

After restart add the admin and demo user and also add the various service and their endpoint URL.

Step 2: Configure the Glance (Image Service)
Glance service enables the openstack user to access, retrieve and store the images and snapshot.

The default location storage of images and snapshot at controller nodes is /var/lib/glance/images/.
Basically this service is installed and run at controller nodes. Glance run to services one is, glance-
api to accept the image API requests for image discovery, retrieval, and storage and other one is,
glance-registry to stores, processes, and retrieves meta-data about images.

 Installation of the glance at controller node(10.208.X.X)

apt-get install glance python-glanceclient

 Open the Configuration file /etc/glance/glance-api.conf and /etc/glance/glance-registry.conf and
edit the [database], [keystone] and [paste_deploy] section in each file

[database]
connection=mysql://glance:glance123@10.208.X.X/glance
…
[keystone_authtoken]
auth_uri = http://10.208.X.X:5000
auth_host = 10.208.X.X
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = glance
admin_password = glance123
...
[paste_deploy]
...
flavor = keystone

 Create glance database user

$ mysql -u root -p
mysql> CREATE DATABASE glance;
mysql> GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'10.208.X.X' IDENTIFIED BY

'glance123';
mysql> GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' IDENTIFIED BY

'glance123';
mysql> exit

 Create the glance schema into the database.

su -s /bin/sh -c "glance-manage db_sync" glance

 Register the Glance Services with the Keystone service and create endpoint.

$ keystone service-create --name=glance --type=image --description="OpenStack Image
Service"

$ keystone endpoint-create --service-id=$(keystone service-list | awk '/ image / {print $2}') –
publicurl=http://10.208.X.X:9292 --internalurl=http://10.208.X.X:9292
--adminurl=http://10.208.X.X:9292

 Restart all the glance services

cd /etc/init.d/; for i in $(ls glance-*); do sudo service $i restart; done

Step 3: Configure Nova services
Nova service is a core service or we can say its heart of the OpenStack. Nova is a main part of

project from the starting of the OpenStack software stack. At starting of the OpenStack software
stack, Nova service consist and do many task like networking, virtualization etc, but as OpenStack
grows many services have been keep out as a separate project, but even today single node or two
nodes installation nova service from many tasks.

Step 3.1: Configuration at Controller Node(10.208.X.X)
 Installation of the nova at the controller node(10.208.X.X)

apt-get install nova-api nova-cert nova-conductor nova-consoleauth nova-novncproxy nova-
scheduler python-novaclient

 Open the Configuration file nova.conf, edit and add [database] and [DEFAULT] section

vi /etc/nova/nova.conf

[database]
connection=mysql://nova:nova123@10.208.X.X/nova
[DEFAULT]
...
auth_strategy = keystone
…
rpc_backend = rabbit
rabbit_host = 10.208.X.X
rabbit_password = rabbit123
…
my_ip = 192.168.XX.X
vncserver_listen = 192.168.XX.X

http://docs.openstack.org/icehouse/install-guide/install/apt/content/ch_nova.html

vncserver_proxyclient_address = 192.168.XX.X
…
service_neutron_metadata_proxy = true
neutron_metadata_proxy_shared_secret = meta123
...
[keystone_authtoken]
...
auth_uri = http://10.208.X.X:5000
auth_host = 10.208.X.X
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = nova
admin_password = nova123

Create a nova user into the keystone for authentication and authorization

$ keystone user-create --name=nova –pass=nova123 –email=nova@cdac.in
$ keystone user-role-add --user=nova --tenant=service –role=admin

Register the Nova Services with the Keystone service and create endpoint.

$ keystone service-create –name=nova --type=compute --description="OpenStack Compute"
$ keystone endpoint-create --service-id=$(keystone service-list | awk '/ compute / {print $2}')

--publicurl=http://10.208.X.X:8774/v2/%\(tenant_id\)s --internalurl=http://10.208.X.X:8774/v2/%
(tenant_id\)s --adminurl=http://10.208.X.X:8774/v2/%\(tenant_id\)s

Restart the Nova Services

cd /etc/init.d/; for i in $(ls nova-*); do sudo service $i restart; done

Step 3.2: Configuration at Compute Node(192.168.XX.X)
 Install the Nova Compute Service at Compute Nodes

apt-get install nova-compute-kvm

Edit the main configuration file /etc/nova/nova.conf and add in [DEFAULT] section

[DEFAULT]
...
auth_strategy = keystone
...
network_api_class = nova.network.neutronv2.api.API
neutron_url = http://10.208.X.X:9696
neutron_auth_strategy = keystone
neutron_admin_tenant_name = service
neutron_admin_username = neutron
neutron_admin_password = neutron123
neutron_admin_auth_url = http://10.208.X.X:35357/v2.0
linuxnet_interface_driver= nova.network.linux_net.LinuxOVSInterfaceDriver
firewall_driver = nova.virt.firewall.NoopFirewallDriver
security_group_api = neutron
...

[database]
The SQLAlchemy connection string used to connect to the database
connection = mysql://nova:novadb@10.208.X.X/nova
...
[keystone_authtoken]
auth_uri = http://192.168.XX.X:5000
auth_host = 192.168.XX.X
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = nova
admin_password = nova123
…
rpc_backend = rabbit
rabbit_host = 192.168.XX.X
rabbit_password = rabbit123
...
my_ip = 192.168.XX.XX
vnc_enabled = True
vncserver_listen = 0.0.0.0
vncserver_proxyclient_address = 192.168.XX.XX
novncproxy_base_url=http://192.168.XX.X:6080/vnc_auto.html
...
glance_host = 192.168.XX.X

Restart the Nova Compute Services

service nova-compute restart

Step 4: Add a networking service(Neutron Service)
Networking is a major component and play important role in the success of any cloud. OpenStack

provide many option and variance from various vendors and compatible with OpenStack software
stacks. We have used the neutron with ml2 pluge-in.

Step 4.1: Configuration at Controller Node(10.208.X.X)
Create neutron database with neutron user

$ mysql -u root -p
mysql> CREATE DATABASE neutron;
mysql> GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'10.208.X.X' IDENTIFIED

BY 'neutron123';
mysql> GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'%' IDENTIFIED BY

'neutron123';

Register the Neutron Services with the Keystone service and create endpoint.

$ keystone user-create --name neutron --pass NEUTRON_PASS --email neutron@cdac.in
$ keystone user-role-add --user neutron --tenant service --role admin
$ keystone service-create --name neutron --type network --description "OpenStack Networking"
$ keystone endpoint-create --service-id $(keystone service-list | awk '/ network / {print $2}')

--publicurl http://10.208.X.X:9696 --adminurl http://10.208.X.X:9696 --internalurl
http://10.208.X.X:9696

 Install the neutron server and ml2 plugin

apt-get install neutron-server neutron-plugin-ml2

Edit the main configuration file /etc/neutron/neutron.conf and add in [database] and [DEFAULT]
section

[database]
connection= mysql://neutron:neutron123@10.208.X.X/neutron

[DEFAULT]
….
auth_strategy = keystone
[keystone_authtoken]
...
auth_uri = http://10.208.X.X:5000
auth_host = 10.208.X.X
auth_protocol = http
auth_port = 35357
admin_tenant_name = service
admin_user = neutron
admin_password = neutron123
...
rpc_backend = neutron.openstack.common.rpc.impl_kombu
rabbit_host = 10.208.X.X
rabbit_password = rabbit123
...
notify_nova_on_port_status_changes = True
notify_nova_on_port_data_changes = True
nova_url = http://10.208.X.X:8774/v2
nova_admin_username = nova
nova_admin_tenant_id= d0eae2882521477d9b556ea3f8064db2
nova_admin_password = nova123
nova_admin_auth_url = http://10.208.X.X:35357/v2.0
…
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True
verbose = True
…
network_api_class = nova.network.neutronv2.api.API
neutron_url = http://controller:9696
neutron_auth_strategy = keystone
neutron_admin_tenant_name = service
neutron_admin_username = neutron
neutron_admin_password = neutron123
neutron_admin_auth_url = http://10.208.X.X:35357/v2.0
linuxnet_interface_driver nova.network.linux_net.LinuxOVSInterfaceDriver
firewall_driver = nova.virt.firewall.NoopFirewallDriver
security_group_api = neutron

Edit and configure the ml2 files /etc/neutron/plugins/ml2/ml2_conf.ini and edit the section [ml2],
[ml2_type_gre] and [securitygroup]

[ml2]
...
type_drivers = gre
tenant_network_types = gre
mechanism_drivers = openvswitch
[ml2_type_gre]
...
tunnel_id_ranges = 1:1000
...
[securitygroup]
...
firewall_driver=neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver
enable_security_group = True

Restart the nova and neutron services

cd /etc/init.d/; for i in $(ls nova-*); do sudo service $i restart; done
cd /etc/init.d/; for i in $(ls neutron-*); do sudo service $i restart; done

Step 4.2: Configuration at Network Node(10.208.X.X)
Before start any installation process on network nodes one thing will be keep in mind, that network
node has 3 NIC cards and one card act external, second act management and third one act as
instances tunnel as shown in figure 3.

Fig 3. Network Connection between the nodes

Edit the file /etc/sysctl.conf

net.ipv4.ip_forward=1
net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

net.bridge.bridge-nf-call-arptables=1
net.bridge.bridge-nf-call-iptables=1
net.bridge.bridge-nf-call-ip6tables=1

 Implement the change

sysctl -p

Download and Install neutron with dependent libraries

apt-get install neutron-plugin-ml2 neutron-plugin-openvswitch-agent neutron-l3-agent
neutron-dhcp-agent

Edit the configuration file /etc/neutron/neutron.conf and add the following key to the
[DEFAULT] and [keystone_authtoken] section

[DEFAULT]
...
auth_strategy = keystone
…
rpc_backend = neutron.openstack.common.rpc.impl_kombu
rabbit_host = 10.208.X.X
rabbit_password = RABBIT_PASS
...
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True
…
[keystone_authtoken]
...
auth_uri = http://10.208.X.X:5000
auth_host = 10.208.X.X
auth_protocol = http
auth_port = 35357
admin_tenant_name = service
admin_user = neutron
admin_password = neutron123

Now configure Layer-3(L3) agent, its provides the routing services for the instances. Edit the
[DEFAULT] section of file /etc/neutron/l3_agent.ini

[DEFAULT]
...
interface_driver= neutron.agent.linux.interface.OVSInterfaceDriver
use_namespaces = True

Now configure the DHCP agent provides DHCP services for the instances and edit the file
/etc/neutron/dhcp_agent.ini and add modify the [DEFAULT] section

[DEFAULT]
...
interface_driver= neutron.agent.linux.interface.OVSInterfaceDriver
dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq

use_namespaces = True
dnsmasq_config_file = /etc/neutron/dnsmasq-neutron.conf

Create file /etc/neutron/dnsmasq-neutron.conf and add line

dhcp-option-force=26,1454

Kill all the dnsmasq processes

killall dnsmasq

Now configure the metadata agent, its provides the configuration information and the credential
to access the instance remotely. Main configuration file is /etc/neutron/metadata_agent.ini

[DEFAULT]
...
auth_url = http://10.208.X.X:5000/v2.0
auth_region = cdacPune
admin_tenant_name = service
admin_user = neutron
admin_password = neutron123
nova_metadata_ip = 10.208.X.X
metadata_proxy_shared_secret = meta123

Now configure the Modular Layer 2 (ml2) plug-in, provide the framework to build virtual
network for the instances and the configuration file is /etc/neutron/plugins/ml2/ml2_conf.ini and
add the section [ml2], [ml2_type_gre], [ovs] and [securitygroup]

[ml2]
...
type_drivers = gre
tenant_network_types = gre
mechanism_drivers = openvswitch
[ml2_type_gre]
...
tunnel_id_ranges = 1:1000

[ovs]
...
local_ip= 192.168.XX.X
tunnel_type = gre
enable_tunneling = True

[securitygroup]
...
firewall_driver= neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver
enable_security_group = True

Now we need to configure Open vSwitch(OVS) service, provide support for the virtual network
for the instances by direct and redirect the traffic. Restart the ovs services.

service openvswitch-switch restart

Add the integration bridge

ovs-vsctl add-br br-int

 Restart all the network service

cd /etc/init.d/; for i in $(ls neutron-*); do sudo service $i restart; done

Step 4.3: Configuration at Compute Node
Before start any installation on network nodes one thing will be keep in mind, that network node

has 3 NIC cards and one card act external, second one act management and third one act as instance
tunnel.

Edit the file /etc/sysctl.conf

net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0
net.bridge.bridge-nf-call-arptables=1
net.bridge.bridge-nf-call-iptables=1
net.bridge.bridge-nf-call-ip6tables=1

 Implement the change

sysctl -p

Download and Install neutron service with depend libraries

apt-get install neutron-common neutron-plugin-ml2 neutron-plugin-openvswitch-agent

Edit the configuration file /etc/neutron/neutron.conf and add the following key to the
[DEFAULT] and [keystone_authtoken] section

[DEFAULT]
...
auth_strategy = keystone
…
rpc_backend = neutron.openstack.common.rpc.impl_kombu rabbit_host = 10.208.X.X
rabbit_password = rabbit123
...
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True
…
[keystone_authtoken]
...
auth_uri = http://10.208.X.X:5000
auth_host = 10.208.X.X
auth_protocol = http
auth_port = 35357
admin_tenant_name = service
admin_user = neutron
admin_password = neutron123

Now configure the Modular Layer 2 (ml2) plug-in, provide the framework to build virtual

network for the instances and the main configuration file is /etc/neutron/plugins/ml2/ml2_conf.ini
and add the section [ml2], [ml2_type_gre], [ovs] and [securitygroup]

[ml2]
...
type_drivers = gre
tenant_network_types = gre
mechanism_drivers = openvswitch
…
[ml2_type_gre]
...
tunnel_id_ranges = 1:1000

[ovs]
local_ip= 192.168.XX.X
tunnel_type = gre
enable_tunneling = True
[securitygroup]
...
firewall_driver= neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver
enable_security_group = True

Now we need to configure Open vSwitch(OVS) service, provide support for the virtual network
for the instances by direct and redirect the traffic. Restart the ovs services.

service openvswitch-switch restart

Add the integration bridge

ovs-vsctl add-br br-int

Restart all the network service

cd /etc/init.d/; for i in $(ls neutron-*); do sudo service $i restart; done

Step 5: Add the dashboard at Controller Node(10.208.X.X)
Although OpenStack based cloud is manage by command line but OpenStack also provides

a beautiful gui dashboard and project name as Horizon. Horizon enable the user to deploy image,
configure the virtual network and other thing.

To horizon need at least Python 2.6
 Install the dashboard on the controller node(10.208..X.X)

apt-get install apache2 memcached libapache2-mod-wsgi openstack-dashboard

Update the Allow Host in local_setting of the Horizon and edit the file /etc/openstack-
dashboard/local_settings.py

ALLOWED_HOSTS = ['localhost', 'my-desktop']
OPENSTACK_HOST = "10.208.X.X"

Start the Apache server and memcached

service apache2 restart
service memcached restart

Step 7: Launch an instance
All the major setup process has been over in the above steps, now its time to launch an instance.

Before launch an instance we need upload image, create virtual network etc all these steps require
time only for first time, later it a simple launch of instances.

Setup the Environment variable for both admin and demo users.

$ vi admin.sh
export OS_USERNAME=admin
export OS_PASSWORD=admin123
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://10.208.X.X:35357/v2.0

$ source admin.sh
$ vi demo.sh
export OS_USERNAME=demo
export OS_PASSWORD=demo123
export OS_TENANT_NAME=demo
export OS_AUTH_URL=http://10.208.X.X:35357/v2.0

Download the image from the net.

$ source admin.sh
$ mkdir /tmp/images
$ cd /tmp/images/
$ wget http://download.cirros-cloud.net/0.3.2/cirros-0.3.2-x86_64-disk.img

Upload the image into the OpenStack cloud

$ glance image-create --name "cirros-0.3.2-x86_64" --disk-format qcow2 --container-format
bare --is-public True --progress < cirros-0.3.2-x86_64-disk.img

$ glance image-list
+-----------------------------------+-------------------- +-------------+------------------+----------+--------+
| ID | Name | Disk Format | Container Format | Size | Status |
+------------------------------------+---------------------+-------------+------------------+----------+------+

| acafc7c0-40aa-4026-9673-b879898e1fc2 | cirros-0.3.2-x86_64 | qcow2 |bare | 13167616 | active |
+--------------------------------------+---------------------+-------------+------------------+----------+--

Create the external networked

$ source admin.sh
$ neutron net-create ext-net --shared --router:external=True
Created a new network:
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	True
id	893aebb9-1c1e-48be-8908-6b947f3237b3
name	ext-net
provider:network_type	gre
provider:physical_network	
provider:segmentation_id	1

router:external	True
shared	True
status	ACTIVE
subnets	
tenant_id	54cd044c64d5408b83f843d63624e0d8
+---------------------------+--------------------------------------+

Create the external subnet

$ neutron subnet-create ext-net --name ext-subnet --allocation-pool start=10.208.X.X
,end=10.208.X.X --disable-dhcp --gateway 10.208.X.X 10.208.X.X/XX

Create an internal network demo

$ source demo.sh
$ neutron net-create demo-net
Created a new network:
+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
admin_state_up	True
id	ac108952-6096-4243-adf4-bb6615b3de28
name	demo-net
shared	False
status	ACTIVE
subnets	
tenant_id	cdef0071a0194d19ac6bb63802dc9bae

Create an Subnet of demo network

$ neutron subnet-create demo-net --name demo-subnet --gateway 192.168.1.1 192.168.1.0/24

Now create a router on the internal network and connect to an external network to access the
instance from outside.

$ neutron router-create demo-router
Created a new router:
+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
admin_state_up	True
external_gateway_info	
id	635660ae-a254-4feb-8993-295aa9ec6418
name	demo-router
status	ACTIVE
tenant_id	cdef0071a0194d19ac6bb63802dc9bae
+-----------------------+--------------------------------------+
$ neutron router-interface-add demo-router demo-subnet

Attach the router to the external network and set the gateway

$ neutron router-gateway-set demo-router ext-net

To verify and test by ping the router gateway ip addresses

$ ping -c 4 10.208.X.X

Generate the public key

$ source demo.sh
$ ssh-keygen
$ nova keypair-add --pub-key ~/.ssh/id_rsa.pub demo-key
$ nova keypair-list
+----------+---+
| Name | Fingerprint |
+----------+---+
| demo-key | 6c:74:ec:3a:08:05:4e:9e:21:22:a6:dd:b2:62:b8:28 |
+----------+---+

Launch the instance

$ nova boot --flavor m1.tiny --image cirros-0.3.2-x86_64 --nic net-id=ac108952-6096-4243-
adf4-bb6615b3de28 --security-group default --key-name demo-key demo-instance1

$ nova list
+------------------------------------+----------------+-------+------------+-------------+--------------------+
| ID | Name | Status | Task State |Power State | Networks |
+--------------------------------------+----------------+-------+------------+-------------+------------------+
| 05682b91-81a1-464c-8f40-8b3da7ee92c5 | demo-instance1 | ACTIVE | - | Running |

demo-net=192.168.X.X |

To access the instance remotely, add rule to default security list

$ nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| icmp | -1 | -1 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+
$ nova secgroup-add-rule default tcp 22 22 0.0.0.0/0
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 22 | 22 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

 Create a floating IP from the external network ext-net

$ neutron floatingip-create ext-net
Created a new floatingip:
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
fixed_ip_address	
floating_ip_address	10.208.X.X
floating_network_id	9bce64a3-a963-4c05-bfcd-161f708042d1

id	05e36754-e7f3-46bb-9eaa-3521623b3722
port_id	
router_id	
status	DOWN
tenant_id	7cf50047f8df4824bc76c2fdf66d11ec
+---------------------+--------------------------------------+

Assign the Floating IP to the demo-instance1 as shown in figure 4

$ nova floating-ip-associate demo-instance1 10.208.X.X

Check the status of the Floating IP assign

$ nova list
+---------------------------------+----------------+--------+------------+---------+------------------------+
| ID | Name | Status | Task State | Power State | Networks

|+----------------------------+----------------+--------+------------+------------+-------------------------------
+| 05682b91-81a1-464c-8f40-8b3da7ee92c5 | demo-instance1 | ACTIVE | - | Running | demo-
net=192.168.X.X, 10.208.X.X |

+-----------------------------+----------------+--------+------------+-------------+--------------------------+
$ ping -c 4 10.208.X.X

Fig 4. Instance Running and Virtual Network with Router

