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SUMMARY 
 
Computation of synthetic seismograms for marine models is 
useful for the inversion and interpretation of offshore seismic 
data sets. In this paper we describe the implementation of an 
algorithm for solving 2D elastic wave equation for marine 
models. The resulting hyperbolic system of equations is 
solved on a Cartesian grid using a MacCormack finite 
difference scheme. The stability condition and P-wave phase 
velocity is independent of Poisson’s ratio. Moreover, the S-
wave phase velocity is insensitive to the Poisson’s ratio. This 
allows us to use the same algorithm for liquid medium by 
making the Poisson’s ratio equal to 0.5. The method is first 
tested for a simple two-layer model. It is shown that as the 
Poisson’s ratio increases from 0.25 to 0.5 in the top layer, the 
converted phases are eliminated from the seismograms. 
Finally, synthetic seismograms and snapshots are shown for a 
realistic model. 
 
INTRODUCTION 
 
Seismic modeling is an integral part of seismic processing, as 
it provides us the seismic response for a given earth model 
(Kelly et al. 1976, Virieux 1986, Vafidis 1988, Phadke and 
Bhardwaj 1998). Synthetic seismograms and time slices 
generated by seismic modeling are also used for interpretation 
and inversion. Water-bottom and pegleg multiples in offshore 
seismic data, can significantly distort primary reflections and 
AVO amplitude information (Stephan, 1983). Marine 
synthetic seismograms for realistic models are therefore 
necessary in order to understand the behavior of these 
distortions. A homogeneous formulation that treats the liquid-
solid boundary explicitly cannot accommodate complex 
liquid-solid boundaries. In this paper we present a 
heterogeneous formulation of the elastic wave equation, 
which is also valid in liquid medium by making Poisson’s 
ratio equal to 0.5. This is possible because this formulation 
does not involve the derivatives of the physical parameters. 
First part of the paper gives the mathematical details followed 
by the numerical scheme and the explanation for the validity 
of the solution in a liquid medium. Then we present numerical 
examples for a simple model as well as for a realistic model. 
The algorithm is implemented on a parallel machine 
(PARAM 10000) using domain decomposition scheme, which 
allows us to calculate synthetic data for large models.  
 
MATHEMATICAL FORMULATION 
 
The mathematical model for elastic wave propagation in 2D 
heterogeneous media consists of coupled second order partial 
differential equations governing motions in x- and z- 
directions  
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and the stress-strain relations given by 
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where u and w are horizontal and vertical displacements, 
wandu &&  are the horizontal and vertical particle velocities, 

xzzzxx and, σσσ  are the stress components,   λ and µ  
are the Lamé parameters and ρ  is the density. 
Instead of solving these second order coupled partial 
differential equations we formulate them as a first order 
hyperbolic system (Virieux 1986, Vafidis 1988, Dai et al. 
1996) :  
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When we move from elastic to acoustic media, the value of 
 µ  becomes zero. By substituting µ = 0 in the above equation 
we get a first order system of hyperbolic partial differential 
equations which governs the acoustic wave propagation.  
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where p is the negative pressure wavefield, and K=λ is the 
incompressibility.  
For solving the first order hyperbolic system (6), we use the 
method of splitting in time (Vafidis 1988). An explicit finite 
difference method based on the MacCormack scheme is used 
for the numerical solution (Mitchell and Griffiths, 1981). This 
scheme is fourth order accurate in space and second order 
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accurate in time. The model discretization is based upon 
regular grid, where hzx =∆=∆ is the grid size in the x- and z- 
directions, respectively; t∆ is the time step; j,m,k are integers 
such that tkt,zmz,xjx ∆=∆=∆= . Sponge boundary 
conditions are used for attenuating the reflected energy from 
the left, right and bottom edges of the model (Sochaki et al. 
1987). Free-surface boundary condition is used for top edge. 
 
NUMERICAL ANALYSIS 
 
The problem of stability consists of finding conditions under 
which the difference between the theoretical and numerical 
solutions of the difference equation remains bounded as time 
progresses. A finite difference method is unstable when its 
error grows without bound. In the present study we are using 
MacCormack’s finite difference method which consists of a 
predictor and a corrector in both x- and z- directions. By 
substituting the predictor value into the corrector, we get a 
finite difference formula for x- direction that evaluates the 
wavefield at (k+1/2)th time step from kth time step 
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where p = k/h. A similar formula is obtained for the z- 
direction that evaluates the wavefield at (k+1)th time step 
from (k+1/2)th time step. The wave propagation takes place 
by alternating between x- and z- directions.  
If a typical Fourier harmonic component 

)zixiexp(QQ 0 γ+β= , where Q0 is a constant vector, is 
substituted into the difference equation for Qk, it is found that 
Qk+1/2 is of the same form but with GQ0 replacing Q0. The 
matrix G is called the amplification matrix and is given by 
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where ξ β η γ= =h h, and σ  is a constant depending upon 
the direction of splitting.  
The von Neumann necessary condition for the stability of a 
system requires the magnitude of the maximum eigenvalue of 
the amplification matrix to be less than one. Since system of 
equation is hyperbolic, matrix A (or B) can be diagonalized. 
Thus, for the MacCormack method, von Neumann condition 
is both necessary and sufficient for stability. If a is an 
eigenvalue of A the stability condition for this scheme 
(Gettllieb and Turkel, 1976) is given by  
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where, |am| is the largest eigenvalue of matrix A. The 
eigenvalues of matrices A and B are  

λ1 = 0, λ2 = 0, λ3 = 1, λ4 =  vp ,  λ5 = vs .  
Largest eigenvalue is vp as sp vv ≥ . Thus, the stability 

condition for the special case ∆x = ∆z, is  
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The stability condition (11) is independent of the S-wave 
velocity vs, or of the Poisson’s ratio ν.  
The governing equations for elastic wave propagation in the 
form of second order partial differential equations contain 
derivatives of the physical parameters. By formulating it into 
a first order hyperbolic system of partial differential 
equations, we avoid the derivatives of physical parameters. At 
a liquid-solid interface, there are discontinuities in physical 
parameters. Since the formulation does not involve the 
derivatives of physical parameters, the wave propagation can 
be carried out in heterogeneous media as long as we do not 
violate stability criterion (11).    
For the phase velocity analysis we consider a plane wave with 
wavenumber k, which makes an angle θ with the x-axis. 
Following Bamberger et al.(1980), the quantity γ for the 
scheme presented here is given by  
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that controls the numerical dispersion, and the quantity H 
defined by  

λ
∆= x

H                   (13) 

controls the number of grid points per wavelength of the 
plane wave. The resulting non-dimensional P-wave phase 
velocity is : 
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where qp is independent of Poisson’s ratio ν.  Similarly, the 
non-dimensional S-wave phase velocity is  
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where qs depends on Poisson’s ratio through vp/vs as  
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Figure 1: Dispersion curves for non-dimensional P-wave phase 
velocity for any Poisson’s ratio with a dispersion parameter γ = 0.5. 
Results for different angles θ of the plane wave with respect to the x-
axis are shown. 
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For γ = 0.5, qp(H) is plotted in Figure 1 for different angles 
θ. Τhe figure is valid for any Poisson’s ratio as qp is 
independent of Poisson’s ratio ν. Figure 2 illustrates the 
dispersion curves for non-dimensional S-wave phase velocity 
for Poisson’s ratios 0.25 and 0.5. Bamberger et al. (1980) has 
shown that for standard finite difference schemes qs becomes 
unbounded for ν=0.5. However, the scheme presented here 
remains stable even for a liquid medium. Therefore, 
propagation of elastic waves and acoustic waves across a 
liquid-solid interface can be carried out with the same code. 
No special treatment is necessary at the liquid-solid boundary 
and the method can be applied to complex interface 
geometries. 

 

 
Figure 2: Dispersion curves for non-dimensional S-wave phase 
velocity for two different Poisson’s ratios ν with a dispersion 
parameter γ = 0.5. Results for different angles θ of the plane wave 
with respect to the x-axis are shown. The upper graph is for ν=0.25 
and the lower graph is for ν=0.5. 
 
The wave propagation code is parallelized using a domain 
decomposition scheme and is implemented on PARAM 
10000 (a cluster of SUN workstations) using MPI parallel 
programming environment. This implementation allows us to 
use this technique for generating synthetic data for large size 
models. 
 
EXAMPLES 
 
The first example presented here is a simple two-layer model 
(Figure 3). The synthetic seismograms for this model are 
calculated for different Poisson’s ratios in the first medium.  

The source wavelet used for calculation is the second 
derivative of a Gaussian function with a dominant frequency 
of 30Hz. The synthetic seismograms for Poisson’s ratios 0.25, 
0.35, 0.45 and 0.5 are shown in Figure 4. Observe the PP and 
PS and SP reflections on these seismograms. As the Poisson’s 
ratio increases the PS and SP reflection components reduce, 
and finally vanish for ν=0.5.  
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 3: Velocity data and source location for the two-layer model. 

 

 
Figure 4: Evolution of vertical numerical seismograms from the solid-
solid to the liquid-solid two-layer model shown in Fgure 3. Different 
Poisson’s ratio ν are taken from 0.25 to 0.5. Absorbing boundary 
conditions are applied on all four sides of the model. 
 
The P-wave velocity model used in the second example is 
shown in the upper part of Figure 5. There is a water layer at 
the top. The water bottom is quite undulating. Poisson’s ratio 
and density in other layers are 0.5 and 2.2gm/cc respectively. 
The snapshots of the wave propagation through this model are 
shown in Figure 5. The synthetic seismogram data for this 
model are shown in Figure 6. A gain function is applied for 
display purposes. Since the free-surface boundary condition is 
used for the top edge, all kinds of multiples are also modeled. 
The example clearly demonstrates the capability of this 
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approach for generating synthetic seismograms in realistic 
marine models. 
 
CONCLUSIONS 
 
In this paper, we have presented an algorithm for calculating 
synthetic seismograms in marine models using elastic wave 
equation. The elastic wave equation is formulated as a first 
order hyperbolic system. This avoids the derivatives of 
physical parameters. The numerical solution is obtained by 
using a splitting scheme and a regular Cartesian grid as 
opposed to a staggered grid (Virieux, 1986). The solution is 
valid for any Poisson’s ratio, which allows us to use the same 
method for liquid and solid mediums. Numerical examples 
demonstrate the usefulness of the method. Extension of this 
method to 3D is quite straightforward. 
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Figure 5: Snapshots of the wave propagation through the marine 
velocity model. Free surface boundary condition is applied on the top 
edge of the model and absorbing boundary conditions are applied to 
left, right and bottom edges of the model. 
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Figure 6: Synthetic seismogram for the marine model. A uniform gain 
function is applied for plotting purposes. 
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