

On improving performance of migration algorithms using MPI and MPI-IO
Dheeraj Bhardwaj*, Suhas Phadke and Sudhakar Yerneni
Centre for Development of Advanced Computing, Pune University Campus, GaneshKhind, Pune 411007, India

SUMMARY

High level of I/O performance is necessary in making use of
parallel machines for many scientific applications. In this
paper we discuss the I/O requirements of one such
application: 3D seismic migration. I/O performance is the
bottleneck rather than the computational or communication
performance in 3D seismic imaging. For large 3D data
volume it is not possible to read and keep all the required data
and information in computer memory. Therefore the data are
partially read and intermediate results are written out at
various stages during the execution of the code. In this article
we have discussed an approach to handle the massive I/O
requirements of seismic migration using MPI-IO. We have
also optimised some data communication using MPI calls.
The performance of parallel seismic migration code on
PARAM 10000, which is a cluster of SUN workstations, is
discussed for two data sets.

INTRODUCTION

The processor and communication speeds of parallel
computers have steadily increased, but the technology for
improving the I/O sub systems has not progressed at the same
pace. I/O subsystems for distributed memory parallel
computers are often not designed to handle efficiently an
application with massive I/O requirements, such as seismic
data processing. Most of the parallel computers work well
with computationally intensive applications, but they are
inefficient when it comes to satisfying the needs of
applications that are also I/O intensive.

Recently, cluster of workstations or network of workstations
has gained popularity as they provide a very cost-effective
parallel-computing environment. Most of these clusters use
Network File System (NFS) and use MPI (Message Passing
Interface) for parallel programming. One limitation of NFS is
that the I/O nodes are driven by standard UNIX read and
write calls, which are blocking requests. This is not a problem
for applications with small volume of I/O, but as the volume
increases, it is necessary to be able to overlap computations
with the I/O to maintain efficient operation (Olfield et al.,
1998, Poole, 1994).

In this paper we first give a description of MPI-IO and the
migration technique. Next we show a comparison of the
conventional UNIX I/O and MPI-IO. We also talk about some
code optimization using MPI. Then we discuss the
implementation of MPI-IO in migration code and show its
performance for two data sets.

MPI-IO

Parallel programming has long been hampered by the lack of
a standard, portable Application Programming Interface (API)
for parallel I/O. Unix API is not appropriate for parallel I/O

as it lacks some of the common features observed in parallel
programs, such as noncontiguous accesses and collective I/O.
This results in poor performance. MPI-IO is a comprehensive
API, which includes features for I/O parallelism, portability
and high performance.

ROMIO (A high-performance, Portable MPI-IO) is a very
well suited software solution to a cluster environment where
each machine has its own disk and processor. It provides a
solution such that instead of a single processor reading the
entire file and then scattering it to other processors, each
processor does a local read or write. Most of the functions in
MPI-2 I/O standard have been implemented in ROMIO
(Thakur et al. 1998, 1999).

A COMPARISON OF UNIX I/O AND MPI-IO

An increasing number of applications, such as migration, need
to access large files (greater than or equal to 2GB). In order to
improve the access performance for large files, the file system
interface and internal data structures must use 64 bit integers
to represent file offsets. ROMIO defines MPI_Offset as an 8-
byte integer and uses the corresponding file system functions
for large files.

Most file-systems, support only the regular Unix open and do
not have collective open functions. MPI-IO provides
collective IO functions which must be called by the
processors that together open the file. Collective I/O has been
shown to be a very important optimization in parallel I/O and
can improve performance significantly (Thakur and
Choudhary, 1996). This is because the most file systems do
not support shared file pointers.

Figure 1: File view and its distribution across the p
processors.

For the purpose of implementing an application on parallel
machine, we need to partition the input file across the
processors. Figure 1, depicts the partitioning of the entire
input file across the p processors. We studied the distribution
of the input file using UNIX I/O and MPI-IO. In case of
UNIX I/O, process with rank zero reads the whole input file,
partitions it and distributes it to other processors. Distribution
is done using MPI_Send and processors with rank greater than
zero receive their corresponding blocks by MPI_Recv. In
MPI-IO, all the processors open the file using MPI_File_open
and read their required data blocks by moving offset pointer

P0 Pp-2 Pp-1 P1 Pi

Input file size

Offset pointer

Migration using MPI and MPI-IO

to the beginning of their corresponding data block in the input
file. This is carried out by using MPI_File_read_at. In order
to compare both these approaches, we fixed the size of the
block needed by each processor. Figure 2, shows the time
required to read a data size of 20.48 MB on each processor
versus number of processors. It is evident from the graphs that
the difference in the I/O time between both the approaches
increases as we increase the number of processors.

Figure 2: Graphs showing the time required to read a data size
of 20.48 MB on each processor against the number of
processors.

The time required to read and distribute the input data
(without MPI-IO) and the time required to read the data
blocks by the processors concurrently (with MPI-IO) using
shared file pointers, are functions of data size. Figure 3,
shows the comparison of these two approaches for a fixed
number of processors. It is clear from this figure that for large
data blocks MPI-IO approach gives better performance.

Figure 3: Graphs showing the time required to read the data
(with and without MPI-IO) against the data size on each
processor for 32 processors.

Next, we studied the I/O for a data block that is required by
all the processors. Figure 4 illustrates the comparison
between the read and broadcast and concurrent read. From
this figure we infer that read and broadcast is faster.
Therefore, we decided to use this for reading velocity slices
for migration.

Figure 4: Graphs showing the time required to read and send a
data block to a large number of processors. The blue line
indicates the time when each processor opens the file and read
concurrently. The red line indicates the time when the
processor with rank 0 (master) reads the file and broadcasts to
all the processors.

PARALLEL 3D POST-STACK DEPTH MIGRATION

For imaging complex geological structures, where the
velocities vary in all directions, depth migration is a necessity.
Depth migration for laterally varying velocity structures is a
compute intensive wave equation based method. The depth
migration method comprises of two steps, extrapolation and
imaging. In this paper we have used a finite difference
formulation of the 65 degree parabolic approximation in ω-x
domain (Claerbout, 1985), for extrapolating the wavefield.
The imaging is a summation of all the frequencies at each
depth for t=0.

Figure 5: Distribution of frequency sequential data on p
processors.

ω1

ω3

ω

ωp

ω2

X

Y

Migration using MPI and MPI-IO

The depth migration algorithm in ω-x domain is inherently
parallel in terms of frequencies. The frequencies are evenly
distributed to the available number of processors as shown in
Figure 5. The ultimate goal is to have as many processors as
frequencies. The parabolic approximation of the wave
equation in frequency-space domain is then used for
downward propagation of each monochromatic wave
component (Phadke and Bhardwaj, 1997). Therefore, each
frequency harmonic can be extrapolated in depth
independently and there is no need of intertask
communication.

Figure 6: The flow diagram for migration algorithm with and
without MPI-IO. The red arrows indicate the flow direction
with MPI-IO and the blue arrows indicates the flow direction
without MPI-IO. The black arrows are common to both.

Before we migrate a given data set we apply some pre-
processing. (1) The stacked data is first Fourier transformed
with respect to time and stored in frequency sequential
format. (2) The input velocity model is stored in sequential
depth slices. Only the required number of frequencies are
stored after Fourier transformation. The frequency bandwidth

to be used for migration is determined from spectral analysis
of the input traces. This forms the input data to the depth
migration code.

Parallel Implementation without parallel I/O

The parallel implementation is analogous to Master-Worker
system. After reading all the required parameters, the Master
(processor with rank 0) determines the number of frequencies
and frequency bandwidth to be assigned to each Worker.
Then it reads and sends the frequency data to the designated
Worker in a sequential manner. Then the migration algorithm
runs through the depth steps. The required velocity data for
each depth step is sent to the Workers in the depth loop. Also
the migrated data from all the Workers for that depth is
collected by master, imaged and stored on the disk (Phadke et
al., 1998). A flow chart of this algorithm is shown in figure 6
(red and black arrows).

Parallel Implementation with parallel I/O

In MPI-IO implementation all the processors read their
respective frequency data in parallel. Then the migration
algorithm runs through the depth steps. Master reads velocity
depth slice and broadcasts to all the workers. The processor
with rank zero, collects the migrated data from all the
processors for that depth, images it and then stores it on the
disk. A flow chart of this algorithm is shown in figure 6 (blue
and black arrows).

PERFORMANCE ANALYSIS

Even though the developed codes for ω-x depth migration
(with and without MPI-IO) are portable across various
platforms, most of the development was done on PARAM
10000. The PARAM 10000 system has 40 SUN E450
compute nodes, each with 4 processors @300MHz. Out of 40
nodes 4 nodes are network file servers with 1GB RAM and
512K cache. High-speed network such as fast Ethernet with
peak bandwidth 100MB/s connects the nodes.

Figure 7: Number of processors versus execution time chart
for SEG/EAGE Overthrust model.

Master reads (ω,x,y) data
and distributes to workers

Workers read (ω,x,y) data
using MPI-IO

Initiate Master and
Worker Tasks

Start loop over depth steps

Master reads velocity slice
and broadcasts to workers

Extrapolation and Partial
Imaging on each worker

Final Imaging on master using MPI_Reduce
and write out the migrated depth slice

End loop over depth steps

Exit Master and
Worker Tasks

Migration using MPI and MPI-IO

We first tested the migration algorithm for the data set of
SEG/EAGE (1997) Overthrust model. The original data had
101✕ 25 CDP traces with inline spacing of 100m and
crossline spacing of 100m. We interpolated this data to
401✕ 97 CDP traces to make both inline and crossline
spacing 25m for avoiding spatial aliasing. The input Fourier
Transformed data size was of the order of 46MB. This data set
was migrated with a depth step of 25m for 161 depth steps.
Figure 7 illustrates the execution time as a function of number
of processors. Since the problem size is small the speedup is
not linear.

The second data set used for testing comprised of 950✕ 665
CDP’s. The inline spacing, crossline spacing, and depth step
size were 25m. The data was migrated for 480 depth steps.
Table 1 shows all the other parameters and the time required
to migrate this data set with 64 processors.

Size of FFT data

1.3 GB

Size of Velocity model

1.2 GB

Total number of frequencies
migrated

256

Number of Processors 64

Total Execution time with MPI-IO 7 hrs 44 mins

Table 1: Problem size for the second data set and the
execution time on 64 processors.

DISCUSSION AND CONCLUSIONS

In this paper we first studied the difference between Unix I/O
and MPI-IO and then looked at some of the data distribution
strategies from the point of view of migration codes. If every
processor has to read different blocks of memory from a file,
then every processor can open and read the required data set
using a collective call of MPI-IO. This methodology is good
for reading Fourier Transformed seismic data. But if every
processor needs the same data then one processor should read
it and broadcast it to other processors. This method is good
for reading velocity depth slices. Final imaging, where all the
partially imaged data have to be summed, should be done
using MPI_Reduce operation. The migration of two test data
sets clearly shows the performance of our algorithm. This
programming paradigm will be very helpful for prestack
migration.

In the seismic industry, where the amount of data that needs
to be processed is often measured by the number of tapes,
which amount to hundreds of gigabytes or even terabytes, the
improvement in execution time by making efficient use of the
I/O subsystem, and overlapping I/O with communications and

computations, becomes increasingly apparent. A 10% to 20%
improvement in runtime, especially for prestack migration,
would amount to savings of millions of dollars of processing
time. The above-mentioned results are a step in that direction

ACKNOWLEDGEMENTS

Authors wish to express their gratitude to the Department of
Science and Technology (DST), Government of India, for
funding the seismic data processing project under DCS.
Authors also wish to thank the Centre for Development of
Advanced Computing (C-DAC), Pune for providing the
computational facilities on PARAM 10000 and permission to
publish this work.

REFERENCES

Claerbout, J. F., 1985, Imaging the Earth’s interior, Blackwell

Scientific Publications
Oldfield, R. A., Womble, D. E., and Ober, C. C., 1998,

Efficient Parallel I/O in Seismic Imaging, The Int. J. of
High Performance Computing Applications, Vol. 12, No. 3,
P. 333-344.

Phadke, S. & Bhardwaj, D., 1997, Depth extrapolation of
seismsic wavefields using cubic spline approximation,
Expanded Abstracts, SEG 67th Annual International
Meeting, P. 1658-1661.

Phadke, S., Bhardwaj, D. & Yerneni, S., 1998, Wave equation
based migration and modelling algorithms on parallel
computers, In Proc. of second conference of SPG (Society
of Petroleum Geophysicists), P. 55 - 59.

Poole, J., 1994, Preliminary survey of I/O intensive
applications, Technical Report CCSF-38, Scalable I/O
initiative, Caltech Concurrent supercomputing facilities,
California Institute of Technology, Pasadena.

SEG/EAGE 3-D Modeling series No. 1, 1997, 3-D Salt and
Over thrust models. SEG publications.

Thakur, R., and Choudhary, A., 1996, An extended two-phase
method for accessing sections of out-of-core arrays,
Scientific Programming, 5, P.301-317.

Thakur, R., Lusk, E., and Gropp, W., 1998, User Guide for
ROMIO: A High Performance, Portable MPI-IO
Implementation, TM No. 234, ANL, IL 60439(USA).

Thakur, R., Gropp, W., Lusk, E., 1999, On implementing
MPI-IO portably and with high performance, Proc. Of the
Sixth Workshop on I/O in Parallel and Distributed Systems.
P. 23-32.

