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SUMMARY 
 
High level of I/O performance is necessary in making use of 
parallel machines for many scientific applications. In this 
paper we discuss the I/O requirements of one such 
application: 3D seismic migration. I/O performance is the 
bottleneck rather than the computational or communication 
performance in 3D seismic imaging. For large 3D data 
volume it is not possible to read and keep all the required data 
and information in computer memory. Therefore the data are 
partially read and intermediate results are written out at 
various stages during the execution of the code. In this article 
we have discussed an approach to handle the massive I/O 
requirements of seismic migration using MPI-IO. We have 
also optimised some data communication using MPI calls.  
The performance of parallel seismic migration code on 
PARAM 10000, which is a cluster of SUN workstations, is 
discussed for two data sets. 
 
INTRODUCTION 
 
The processor and communication speeds of parallel 
computers have steadily increased, but the technology for 
improving the I/O sub systems has not progressed at the same 
pace. I/O subsystems for distributed memory parallel 
computers are often not designed to handle efficiently an 
application with massive I/O requirements, such as seismic 
data processing. Most of the parallel computers work well 
with computationally intensive applications, but they are 
inefficient when it comes to satisfying the needs of 
applications that are also I/O intensive. 
 
Recently, cluster of workstations or network of workstations 
has gained popularity as they provide a very cost-effective 
parallel-computing environment. Most of these clusters use 
Network File System (NFS) and use MPI (Message Passing 
Interface) for parallel programming. One limitation of NFS is 
that the I/O nodes are driven by standard UNIX read and 
write calls, which are blocking requests. This is not a problem 
for applications with small volume of I/O, but as the volume 
increases, it is necessary to be able to overlap computations 
with the I/O to maintain efficient operation (Olfield et al., 
1998, Poole, 1994).  
 
In this paper we first give a description of MPI-IO and the 
migration technique. Next we show a comparison of the 
conventional UNIX I/O and MPI-IO. We also talk about some 
code optimization using MPI. Then we discuss the 
implementation of MPI-IO in migration code and show its 
performance for two data sets. 
 
MPI-IO 
 
Parallel programming has long been hampered by the lack of 
a standard, portable Application Programming Interface (API) 
for parallel I/O.  Unix API is not appropriate for parallel I/O 

as it lacks some of the common features observed in parallel 
programs, such as noncontiguous accesses and collective I/O. 
This results in poor performance. MPI-IO is a comprehensive 
API, which includes features for I/O parallelism, portability 
and high performance. 
 
ROMIO (A high-performance, Portable MPI-IO) is a very 
well suited software solution to a cluster environment where 
each machine has its own disk and processor. It provides a 
solution such that instead of a single processor reading the 
entire file and then scattering it to other processors, each 
processor does a local read or write. Most of the functions in 
MPI-2 I/O standard have been implemented in ROMIO 
(Thakur et al. 1998, 1999). 
 
A COMPARISON OF UNIX I/O AND MPI-IO 
 
An increasing number of applications, such as migration, need 
to access large files (greater than or equal to 2GB). In order to 
improve the access performance for large files, the file system 
interface and internal data structures must use 64 bit integers 
to represent file offsets. ROMIO defines MPI_Offset as an 8-
byte integer and uses the corresponding file system functions 
for large files.  
 
Most file-systems, support only the regular Unix open and do 
not have collective open functions. MPI-IO provides 
collective IO functions which must be called by the 
processors that together open the file.  Collective I/O has been 
shown to be a very important optimization in parallel I/O and 
can improve performance significantly (Thakur and 
Choudhary, 1996). This is because the most file systems do 
not support shared file pointers.  
 
 
   
 
 
 
 
 
 
Figure 1: File view and its distribution across the p 
processors.  
 
For the purpose of implementing an application on parallel 
machine, we need to partition the input file across the 
processors.  Figure 1, depicts the partitioning of the entire 
input file across the p processors. We studied the distribution 
of the input file using UNIX I/O and MPI-IO. In case of 
UNIX I/O, process with rank zero reads the whole input file, 
partitions it and distributes it to other processors. Distribution 
is done using MPI_Send and processors with rank greater than 
zero receive their corresponding blocks by MPI_Recv. In 
MPI-IO, all the processors open the file using MPI_File_open 
and read their required data blocks by moving offset pointer 
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to the beginning of their corresponding data block in the input 
file. This is carried out by using MPI_File_read_at. In order 
to compare both these approaches, we fixed the size of the 
block needed by each processor. Figure 2, shows the time 
required to read a data size of 20.48 MB on each processor 
versus number of processors. It is evident from the graphs that 
the difference in the I/O time between both the approaches 
increases as we increase the number of processors.   
 

 
Figure 2: Graphs showing the time required to read a data size 
of 20.48 MB on each processor against the number of 
processors. 
 
The time required to read and distribute the input data 
(without MPI-IO) and the time required to read the data 
blocks by the processors concurrently (with MPI-IO) using 
shared file pointers, are functions of data size. Figure 3, 
shows the comparison of these two approaches for a fixed 
number of processors. It is clear from this figure that for large 
data blocks MPI-IO approach gives better performance. 
 

 
Figure 3: Graphs showing the time required to read the data 
(with and without MPI-IO) against the data size on each 
processor for 32 processors. 
 

Next, we studied the I/O for a data block that is required by 
all the processors.  Figure 4 illustrates the comparison 
between the read and broadcast and concurrent read. From 
this figure we infer that read and broadcast is faster. 
Therefore, we decided to use this for reading velocity slices 
for migration.  
 

 
Figure 4: Graphs showing the time required to read and send a 
data block to a large number of processors. The blue line 
indicates the time when each processor opens the file and read 
concurrently. The red line indicates the time when the 
processor with rank 0 (master) reads the file and broadcasts to 
all the processors. 
 
PARALLEL 3D POST-STACK DEPTH MIGRATION  
 
For imaging complex geological structures, where the 
velocities vary in all directions, depth migration is a necessity. 
Depth migration for laterally varying velocity structures is a 
compute intensive wave equation based method. The depth 
migration method comprises of two steps, extrapolation and 
imaging. In this paper we have used a finite difference 
formulation of the 65 degree parabolic approximation in ω-x 
domain (Claerbout, 1985), for extrapolating the wavefield. 
The imaging is a summation of all the frequencies at each 
depth for t=0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Distribution of frequency sequential data on p 
processors. 
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The depth migration algorithm in ω-x domain is inherently 
parallel in terms of frequencies. The frequencies are evenly 
distributed to the available number of processors as shown in 
Figure 5. The ultimate goal is to have as many processors as 
frequencies. The parabolic approximation of the wave 
equation in frequency-space domain is then used for 
downward propagation of each monochromatic wave 
component (Phadke and Bhardwaj, 1997). Therefore, each 
frequency harmonic can be extrapolated in depth 
independently and there is no need of intertask 
communication. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: The flow diagram for migration algorithm with and 
without MPI-IO. The red arrows indicate the flow direction 
with MPI-IO and the blue arrows indicates the flow direction 
without MPI-IO. The black arrows are common to both. 
 
Before we migrate a given data set we apply some pre-
processing. (1) The stacked data is first Fourier transformed 
with respect to time and stored in frequency sequential 
format. (2) The input velocity model is stored in sequential 
depth slices. Only the required number of frequencies are 
stored after Fourier transformation. The frequency bandwidth 

to be used for migration is determined from spectral analysis 
of the input traces. This forms the input data to the depth 
migration code. 
 
Parallel Implementation without parallel I/O 
 
The parallel implementation is analogous to Master-Worker 
system. After reading all the required parameters, the Master 
(processor with rank 0) determines the number of frequencies 
and frequency bandwidth to be assigned to each Worker. 
Then it reads and sends the frequency data to the designated 
Worker in a sequential manner. Then the migration algorithm 
runs through the depth steps. The required velocity data for 
each depth step is sent to the Workers in the depth loop. Also 
the migrated data from all the Workers for that depth is 
collected by master, imaged and stored on the disk (Phadke et 
al., 1998). A flow chart of this algorithm is shown in figure 6 
(red and black arrows).  
 
Parallel Implementation with parallel I/O 
 
In MPI-IO implementation all the processors read their 
respective frequency data in parallel. Then the migration 
algorithm runs through the depth steps. Master reads velocity 
depth slice and broadcasts to all the workers. The processor 
with rank zero, collects the migrated data from all the 
processors for that depth, images it and then stores it on the 
disk. A flow chart of this algorithm is shown in figure 6 (blue 
and black arrows).  
 
PERFORMANCE ANALYSIS 
 
Even though the developed codes for ω-x depth migration 
(with and without MPI-IO) are portable across various 
platforms, most of the development was done on PARAM 
10000. The PARAM 10000 system has 40 SUN E450 
compute nodes, each with 4 processors @300MHz. Out of 40 
nodes 4 nodes are network file servers with 1GB RAM and 
512K cache. High-speed network such as fast Ethernet with 
peak bandwidth 100MB/s connects the nodes. 

 
Figure 7: Number of processors versus execution time chart 
for SEG/EAGE Overthrust model.  
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We first tested the migration algorithm for the data set of 
SEG/EAGE (1997) Overthrust model. The original data had 
101✕ 25 CDP traces with inline spacing of 100m and 
crossline spacing of 100m. We interpolated this data to 
401✕ 97 CDP traces to make both inline and crossline 
spacing 25m for avoiding spatial aliasing. The input Fourier 
Transformed data size was of the order of 46MB. This data set 
was migrated with a depth step of 25m for 161 depth steps. 
Figure 7 illustrates the execution time as a function of number 
of processors. Since the problem size is small the speedup is 
not linear. 
 
The second data set used for testing comprised of 950✕ 665 
CDP’s. The inline spacing, crossline spacing, and depth step 
size were 25m. The data was migrated for 480 depth steps. 
Table 1 shows all the other parameters and the time required 
to migrate this data set with 64 processors. 
 

Size of  FFT data 
 

1.3 GB 

Size of Velocity model 
 

1.2 GB 

Total number of frequencies 
migrated 
 

256 
 

Number of Processors 64 
 

Total Execution time with MPI-IO 7 hrs 44 mins 
 

 
Table 1: Problem size for the second data set and the 
execution time on 64 processors. 
 
DISCUSSION AND CONCLUSIONS 
 
In this paper we first studied the difference between Unix I/O 
and MPI-IO and then looked at some of the data distribution 
strategies from the point of view of migration codes. If every 
processor has to read different blocks of memory from a file, 
then every processor can open and read the required data set 
using a collective call of MPI-IO. This methodology is good 
for reading Fourier Transformed seismic data. But if every 
processor needs the same data then one processor should read 
it and broadcast it to other processors. This method is good 
for reading velocity depth slices. Final imaging, where all the 
partially imaged data have to be summed, should be done 
using MPI_Reduce operation. The migration of two test data 
sets clearly shows the performance of our algorithm. This 
programming paradigm will be very helpful for prestack 
migration. 
 
In the seismic industry, where the amount of data that needs 
to be processed is often measured by the number of tapes, 
which amount to hundreds of gigabytes or even terabytes, the 
improvement in execution time by making efficient use of the 
I/O subsystem, and overlapping I/O with communications and 

computations, becomes increasingly apparent. A 10% to 20% 
improvement in runtime, especially for prestack migration, 
would amount to savings of millions of dollars of processing 
time. The above-mentioned results are a step in that direction 
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