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SUMMARY

Seismic wave modelling algorithms used for calculating the
seismic response of a given earth model, require large
computational resources in terms of speed and memory.  In
this paper we describe the PVM (Parallel Virtual Machine)
implementation of these algorithms in a distributed computing
environment. Both the acoustic and elastic wave modelling
equations are formulated as a first order hyperbolic system.
Numerical solution uses an explicit finite difference scheme,
which is fourth order accurate in space and second order
accurate in time. A domain decomposition algorithm is used
for distributing the workload and the tasks communicate via
PVM message passing calls. The efficiency and speed of the
algorithms is tested on a cluster of SUN UltraSparc
workstations.

INTRODUCTION

The finite difference methods for modelling wave propagation
in the earth have gained popularity in computational
seismology since their adoption in late sixties, as they offer a
most direct solution to the problem expressed in terms of the
basic equations and the initial and boundary conditions
(Altraman and Karal 1968, Kelly et al. 1976, Virieux 1984,
Virieux 1986, Phadke et al. 1991, Vafidis et al. 1992, Phadke
1994, Dai et al. 1996) . Their usage for calculating synthetic
seismograms on a regular basis was not possible until the
advent of high performance computers, as they require high
computational speed and large memory. Recently, PVM
(Parallel Virtual Machine) programming environment (Geist
et al. 1994) has become popular for network computing. It has
now become possible to use several computers / workstations
to work in a concert to perform a single task.

This paper describes the implementation of acoustic and
elastic wave modelling algorithms in a distributed computing
environment. The first part of the paper gives a mathematical
description, followed by the parallel implementation. Next we
show the efficiency and speed of the developed modelling
algorithms on a network of workstations followed by
conclusions.

MATHEMATICAL FORMULATION

The propagation of both, acoustic and elastic waves in 2D
heterogeneous media is formulated as a first order hyperbolic
system (Virieux 1984, Virieux 1986, Vafidis 1988, Dai et al.
1996) given by
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where p is the negative pressure wavefield, u and w are the
horizontal and vertical components of the velocity vector
respectively, ρ is the density and K is the incompressibility.

For elastic wave modelling
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where u w
• •

and are the horizontal and vertical particle
velocities respectively, σ σ σxx zz xz, and are the stress

components, λ and µ are the Lamo parameters and ρ is the
density.

The first order hyperbolic system (1) is solved by the method
of splitting in time (Strang 1968, Vafidis 1988). An explicit
finite difference method based on the MacCormack scheme is
used for the numerical solution. This scheme is fourth order
accurate in space and second order accurate in time. The finite
difference approximation to the hyperbolic system is
expressed as
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where F Fx x, * are one dimensional finite difference operators
approximating the one-dimensional equation
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and F Fz z, * are one dimensional finite difference operators
approximating the one-dimensional equation
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Application of each one-dimensional operator advances the
wavefield by half a time step. The MacCormack scheme is a
well known technique for solving first order hyperbolic
systems (Mitchell and Griffiths, 1981) and consists of a
predictor and a corrector. The advancement of the wavefield at
any grid point to the next time level requires the knowledge of
the wavefield at 9 points of the previous time level. Therefore
it is a nine point difference star. Sponge boundary conditions
are used for attenuating the reflected energy from the model
boundaries (Sochaki et al. 1987).

PARALLEL IMPLEMENTATION

The parallel implementation of an algorithm involves the
division of total workload into a number of smaller tasks,
which can be assigned to different processors and executed
concurrently. This allows us to solve a large problem more
quickly. The most important part in parallelization is to map
out a problem on a multiprocessor environment. The choice of
an approach to the problem decomposition depends upon the
computational scheme. Here we have implemented a domain
decomposition scheme. The idea of this scheme is simple.
First, the problem domain is divided into subdomains that are
assigned to separate processors.  Figure 1(a) shows an
example   of   the   division   of   problem   domain   into  four

(a)

(b)

Figure 1: (a) Decomposition of model domain into subdomains (b)
Communication between two adjacent tasks

subdomains. Depending upon the number of available
processors and the problem, one can divide the problem
domain into any number of subdomains. Since we are using a

nine point difference star, the calculation of the wavefield at
an advanced time level for any grid point, requires the
knowledge of the wavefield at 9 grid points of the current time
level. For grid points along the boundaries of the subdomain,
the information about the neighbouring grid points comes
from the adjacent subdomains. Therefore after each time step
the subdomains have to exchange wavefield data. Figure 1(b)
shows the required memory space for each 2D array of the
subdomain and the communication between two adjacent
subdomains. The data in the darker region is sent to the lighter
region of the neighbouring subdomian using PVM message
passing calls.

The two most important issues in this implementation are (1)
to balance workload (2) to minimize the communication time.
In a homogeneous multiprocessor environment, as in our case,
the load balancing is assured if all the subdomains are of the
same size. Communication is minimized by minimizing the
perimeters of the subdomain boundaries.

Conceptually, PVM consists of distributed support software
that executes on participating UNIX hosts on a network,
allowing them to interconnect and cooperate in a parallel
distributed computing environment (Geist et al. 1994). PVM
offers an inexpensive platform for developing and running
application. Heterogeneous machines can be used in a
networked environment. The PVM model is a set of message
passing routines which allows data to be exchanged between
tasks by sending and receiving messages.

In the PVM implementation of the modelling codes there is a
master task and there are number of worker tasks. The main
job of master task is to divide the model domain into
subdomains and distribute them to worker tasks. The worker
tasks perform time marching and communicate after each time
step. As demanded by the user the snapshot and synthetic
seismogram data are collected by the master and written out
on the disk.

NUMERICAL EXAMPLES

The accuracy of the wave modelling algorithms is tested by
calculating the wavefield for a corner model shown in Figure
2. The physical parameters (P-wave velocity, density and
Poisson ratio) inside  the  corner region and outside the corner

Figure 2: Velocity model for testing the wave propagation algorithms.
Vp, ρ and σ denote the P-wave velocity, density and Poisson ratio in
the media respectively.
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Acoustic
Wave Modelling

region are also shown. The source pulse is a band limited
Ricker wavelet with a dominant frequency of 30 Hz. The
model was discretized using a grid spacing of 2m.

Snapshot at 0.1 sec Snapshot at 0.2 sec

Snapshot at 0.3 sec Snapshot at 0.4 sec

Figure 3: Snapshots of the acoustic wave propagation through a
corner model. Free surface boundary condition is used at the top
boundary and the absorbing boundary condition is used at all other
boundaries.

Snapshot at 0.1 sec Snapshot at 0.2 sec

Snapshot at 0.3 sec Snapshot at 0.4 sec
Figure 4: Snapshots of the elastic wave propagation through a corner
model. The snapshots show the vertical component of the particle
velocity. Absorbing boundary condition is used at all the model
boundaries.

Figure 3 shows the snapshots of the acoustic wave
propagation in the corner model. On these pictures one can
see the direct wave, the wave reflected from the free surface,
the wave diffracted from the corner, and the reflected,
refracted and transmitted waves. Figure 4 shows the snapshots
of the elastic wave propagation. On these snapshots the direct,
reflected, refracted, converted and transmitted waves can be
easily observed.

PERFORMANCE EVALUATION

Next we tested the performance of these algorithms on a
cluster of Sun UltraSparc Workstations. The computing
system used comprised of 6 dual CPU (200MHz) UltraSparc
workstations connected via a fast ethernet switch. This a part
of the facility called PARAM OpenFrame. The algorithms
were tested for two different model sizes, 1200✕500 grid
points and 600✕500 grid points. Figure 5 illustrates the
execution times and speedup for these models. The triangles
correspond to model size of 1200✕500 grid points, and the
solid circles correspond to model size of 600✕500 grid points.
From the graphs one can observe that for acoustic wave
modelling the maximum speedup achieved on 12 CPU’s is
about 5 for both the model sizes. For elastic wave modelling
the maximum speedup achieved on 12 CPU’s is about 10.
This can be attributed to the fact that there are more number of
computations to be performed in elastic wave modelling.
Therefore the ratio of computation to communication is higher
for elastic modelling as compared to acoustic modelling.
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Figure 5: Execution time and Speedup of the algorithms for two
different model sizes. The left graphs show the performance of
acoustic wave modelling and the right graphs show the performance
of elastic wave modelling. The triangles correspond to model size of
1200✕500 grid points, and the solid circles correspond to model size
of 600✕500 grid points.

Elastic
Wave Modelling
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CONCLUSIONS

In this paper we have implemented higher order finite
difference schemes for the propagation of acoustic and elastic
waves in 2D heterogeneous media. The problem is formulated
as a first order hyperbolic system and MacCormack finite
difference scheme is used for the numerical solution. The
problems are solved using a domain decomposition scheme
and are implemented in a distributed computing environment
(a cluster of SUN UltraSparc workstations) using PVM
message passing calls. The developed codes run on a network
of workstation and are fast and efficient in problem solving.
This can really help in calculating synthetic seismograms for
large models. Furthermore if we have to calculate survey scale
data for large models, such implementation can substantially
reduce the computational time. Since the codes are written
using PVM message passing calls, the codes can be ported on
any computing platform which supports PVM parallel
programming environment. Also, since we are using a splitting
technique and dealing with one dimensional operators, the
extension of these algorithms to 3D is straight forward.
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