
 
 
 
Efficient Parallel I/O for Seismic Imaging in a Distributed Computing Environment  
Dheeraj Bhardwaj*, Sudhakar Yerneni and Suhas Phadke 
Centre for Development of Advanced Computing, Pune University Campus, GaneshKhind, Pune 411007, India 
 
 
SUMMARY 
 
Parallel computers are evaluated by measuring their 
processor and communication speeds. But, for many large-
scale applications the I/O performance is the bottleneck 
rather than the computational or communication 
performance. 3-D seismic imaging is one of such 
applications. Seismic data sets, consisting of recorded 
pressure waves, can be very large, some times more than a 
terabyte in size. It is always not possible to read and keep all 
the required data and information in computer memory. 
Therefore the data are partially read and intermediate results 
are written out. In this article we have discussed an approach 
to handle the massive I/O requirements of seismic migration 
and show the performance of parallel seismic migration code 
on PARAM 10000 which is distributed memory parallel 
computer. Use of parallel I/O clearly indicates the 
improvement of more than 30% in execution time. 
 
INTRODUCTION 
 
The processor and communication speeds of parallel 
computers have steadily increased, but the technology for 
improving the I/O sub systems has not progressed at the 
same pace. I/O subsystems for distributed memory parallel 
computers are often not designed to handle efficiently 
application with massive I/O requirements, such as seismic 
data processing. Most of the parallel computers work well 
with computationally intensive applications, but they are 
inefficient when it comes to satisfying the needs of 
applications that are also I/O intensive. 
 
Recently, cluster of workstations or network of workstations 
has gained popularity as they provide a very cost-effective 
parallel-computing environment. Most of these clusters use 
Network File System (NFS) and MPI (Message Passing 
Interface) as message passing library. One limitation of NFS 
is that the I/O nodes are driven by standard UNIX read and 
write calls, which are blocking requests. This is not a 
problem for applications with small volume of I/O, but as the 
volume increases, it is necessary to be able to overlap 
computations with the I/O to maintain efficient operation 
(Olfield et al., 1998, Poole, 1994).  
 
Although the I/O subsystems of parallel computers may be 
design for high performance, a large number of applications 
achieve only one tenth or less of the peak I/O bandwidth. The 
main reason for poor application-level I/O performance is 
that most parallel I/O systems are unable to handle efficiently 
small requests (Nieuwejaar and Kotz, 1996, Thakur et. Al, 
1998), whereas parallel applications typically make many 
small I/O requests (on the order of kilobytes of less). This 

may be due to the overhead of an I/O call, but its most likely 
due to irregular access patterns and poor caching strategies.  
 
One limitation of MPI–1 is that the I/O operation can be 
done only by master processor. The huge amount of data is 
read by the master from the input file & then distributed to 
the workers. As a result the workers remain idle during this 
period & minimizing the utilization of the resources. This 
also leads to the overheads of data distribution by the master 
to the workers. 
 
ROMIO (A high-performance, Portable MPI-IO) is a very 
well suited software solution to a cluster environment where 
each machine has its own disk and processor. It provides a 
solution such that instead of a single processor reading the 
entire file and then scattering it to other processors, each 
processor does a local read or write.  
 
The parallel I/O enables the processors to read in the 
required information by manipulating the offsets of the file. 
Hence the concept of master-worker no longer exists for 
distribution, thus speeding up the process of data input which 
directly affects the performance. 
 
To image the underground geological structures three-
dimensional seismic data sets are routinely migrated. This 
requires large computational power and I/O bandwidth  
 
In this article, we present an efficient parallel 
implementation (with Parallel I/O) of a finite difference 
method based 3D post-stack depth migration algorithm on a 
distributed memory parallel computer.  
 
3D POST-STACK DEPTH MIGRATION  
 
Mathematical basis for migration in ω-x domain 
 
Depth migration is necessary if the underground seismic 
velocities vary laterally and the wave equation based 
methods are common in use.   
 
The migration method comprises of two steps, extrapolation 
and imaging. The extrapolation equation is a parabolic 
partial differential equation derived from the dispersion 
relation (Claerbout, 1985) 
 

k
v

vk vk
z

x y= − 





+ −






 −















ω
ω ω

1 1 1
2 2

           (1) 

 
where x, y and z are inline, crossline and depth axes 
respectively, kx, ky and kz are the wavenumbers in x, y and z 



Efficient Parallel I/O for Seismic Imaging 
 

  

directions respectively, v is the velocity and ω is the 
frequency. By approximating the square root terms by 
continued fraction expansion, we obtain a 45-degree 
approximation. By inverse Fourier Transforming in x and z 
we obtain the parabolic partial differential equation. This 
equation is numerically solved by the method of splitting, 
which is the basis for the onepass approach (Phadke et al, 
1997, 98). A Crank-Nikolson finite difference scheme with 
absorbing boundary conditions on the sides of the model is 
used for the solution. Imaging is the summation of all the 
frequencies at t=0 for each depth. 
 
PARALLEL IMPLEMENTATION 
 
The depth migration algorithm in ω-x domain is inherently 
parallel in terms of frequencies. The wavefield is first 
decomposed into monochromatic wave components by 
temporal Fourier Transform. The parabolic approximation of 
the wave equation in frequency-space domain is then used 
for downward propagate each monochromatic plane waves 
Therefore, each frequency harmonic can be extrapolated in 
depth independently on each processor and there is no need 
of intertask communication. One can introduce parallel task 
allocation into each frequency harmonic component with the 
ultimate goal being to have as many processors as 
frequencies. At each depth step all frequency components 
after extrapolation are summed up (Imaging Condition) to 
give the migrated image. 
 
The stacked data is first Fourier transformed with respect to 
time and stored in frequency sequential format. Only the 
required number of frequencies are stored after Fourier 
transformation. The frequency bandwidth to be used for 
migration is determined from spectral analysis of the input 
traces. This forms the input data to the depth migration code. 
In addition to this a proper velocity depth model is also 
required.  
 
Parallel Implementation with out parallel I/O 
 
The parallel implementation is analogous to Master-Worker 
system. After reading all the required parameters, the Master 
determines the number of frequencies and frequency 
bandwidth to be assigned to each Worker. Then it reads and 
sends the frequency data to the designated Worker. Then the 
migration algorithm runs through the depth steps. The 
required velocity data for that depth step is sent to the 
Workers. Also the migrated data from all the Workers for 
that depth is collected by master, imaged and stored on the 
disk. A flow chart of this algorithm is shown in figure 1. The 
figure only shows one Master task and one Worker task, but 
in reality there are many Worker tasks. All the Worker tasks 
communicate with Master task in an identical fashion as 
shown in the figure 1.  
 
Parallel Implementation with  parallel I/O 
 
The parallel implementation is analogous to SPMD (Single 
Program Multiple Data) system. Processors read all the 
required parameters and read the frequency data that is to be 
migrated by the individual processor, in parallel. Then the 

migration algorithm runs through the depth steps. All 
processors read the required velocity data for that depth step 
in parallel.  The processor with rank zero, collects the 
migrated data from all the processors for that depth, images 
it and the stores it on the disk. A flow chart of this algorithm 
is shown in figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

YES 

Initiate Master 
Task and 
Spawn Worker 

Worker 
Task 

Read all the 
Parameters & Send 
it to Workers 

Receive all the 
Parameters   
From Master 

Read and Distribute 
Fourier Transformed 
data to Workers 

Receive Assigned Part of 
the data i.e. Number of 
frequencies to be migrated 
on the worker 

Start loop over 
Depth steps 
n = 1,……, N 

Send Velocity Data 
for Depth n∆z 

Receive Partially 
Imaged Data 
from all the 
Workers and 
Perform Imaging 
for Depth n∆ z 

If n<N 

Write the Migrated 
Results and Exit 
Master Task 

Start loop over 
Depth steps
n = 1,…….,  N

Receive Velocity 
Data For Depth n∆z 

Extrapolate the 
Wavefield for all the 
assigned frequencies 
(Use 3D Downward 
Extrapolation Equations) 

Perform Partial Imaging 
by summing over all the 
Assigned Frequencies 

Send Partially Imaged 
Data to Master 

If n<N 

Exit Worker 
Task 

YES 

NO NO 



Efficient Parallel I/O for Seismic Imaging 
 

  

 
 
Figure1: Flow diagram of ω-x depth migration parallel                                     
algorithm without using parallel I/O 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure2: Flow diagram of w-x depth migration parallel  
              algorithm using parallel I/O 
 
 
PERFORMANCE ANALYSIS 
Even though the developed codes for ω-x depth migration 
(with and without parallel I/O) are portable across various 
platforms, most of the development was done on PARAM 
10000. The PARAM 10000 system has 40 SUN E450 
compute nodes, each with 4 processors @300MHz. Out of 40 
nodes 4 nodes are network file servers with 1GB RAM and 
512K cache. High-speed network such as fast Ethernet with 
peak bandwidth 100MB/s connects the nodes. Following 
tables show the comparison between execution time for ω-x 
depth migration algorithms with and without parallel I/O for 
various real data sets of small and large sizes.  
 
2D ω-x depth migration  
 
Data details:       
Size of  fft data 
 

2.66 MB 

Size of Velocity model 
 

1.824 MB 

Total number of 
frequencies to be migrated 
 

222 
 

 
Execution time chart:  
 
Number of 
Processors 

Fast Ethernet 
(Time)  

 Without 
Parallel I/O 

With  
Parallel I/O 

 
16 

 
57.8 Sec 

 

 
37.6 Sec 

 
3-D ω-x depth migration  
 
Data Details: (Data Set 1) 
Size of  fft data 
 

60 MB 

Size of Velocity model 
 

75 MB 

Total number of frequencies 
to be migrated 
 

420 
 

 
Execution time chart 
 
Number of 
Processors 

Fast Ethernet 
(Time)  

Initiate MPI 

Read all the Parameters  
Using Parallel  I / O 

Read Assigned Part of the data i.e. the number of 
frequencies to be migrated on the individual 
processor using parallel I / O (Frequencies are 
evenly distributed among the processors) 

Start loop over time steps 
      n = 1, …….,  N 

Read Velocity Data for time n∆t 
       using parallel  I / O 

Extrapolate the Wavefield for all 
assigned frequencies (Use 2D or 3D 
Downward Extrapolation Equations) 

Perform Partial Imaging 
by summing over all the 
Assigned Frequencies 

Send Partially Imaged Data 
to the processor Rank = 0 

Receive Partially Imaged Data 
from all the processors Rank ≠ 0 
And Perform Imaging for time n∆t 

  If n < N 

Write the Migrated Results  
and Exit 

YES 

NO 



Efficient Parallel I/O for Seismic Imaging 
 

  

 Without 
Parallel I/O 

With  
Parallel I/O 

 
24 
 

 
5765 sec 

 
4331 sec 

 
64 

 
2301 sec 

 

 
1645 sec 

 
 
3-D ω-x depth migration  
 
Data Details: (Data Set 2) 
Size of  fft data 
 

1.3 GB 

Size of Velocity model 
 

1.2 GB 

Total number of frequencies 
to be migrated 
 

256 
 

 
Execution time chart 
 
Number of 
Processors 

Fast Ethernet 
(Time)  

 Without 
Parallel I/O 

With  
Parallel I/O 

 
64 

 
43500 Sec 

 

 
28370 Sec 

 
Note: Timings shown in the execution time chart are the 
average time of five consecutive runs.  
 
DISCUSSION AND CONCLUSIONS 
 
The execution time charts show that the execution time for 
seismic migration code with parallel I/O takes more than 
30% less time as compared to the codes without parallel I/O. 
The reason for this improvement is the change in 
communication that is possible with the support of parallel 
I/O.  The two flow charts explain the fact clearly. In the case 
of parallel I/O, the communication involved in the reading 
and distributing the data among processors can be changed to 
just reading the data in parallel by the processors without any 
communication involved. The communication comes at the 
end of the algorithm, when the final imaging takes place.  
 
In the seismic industry, where the amount of data that needs 
to be processed is often measured by the number of tapes, 
which amount to hundreds of gigabytes or even terabytes, the 
improvement of making efficient use of the I/O subsystem 
becomes increasingly apparent. A 10% to 20% improvement 
in runtime would amount to saving of millions of dollars of 

processing time. The above mentioned results are a step in 
that direction 
 
ACKNOWLEDGEMENTS 
 
Authors wish to express their gratitude to the Department of 
Science and Technology (DST), Government of India, for 
funding the seismic data processing project under DCS. 
Authors also wish to thank the Centre for Development of 
Advanced Computing (C-DAC), Pune for providing the 
computational facilities on PARAM 10000 and permission to 
publish this work. 
 
 
REFERENCES 
 
Claerbout, J. F., 1985, Imaging the Earth’s interior, 
Blackwell Scientific Publications 
 
Phadke, S. & Bhardwaj, D., Depth extrapolation of seismsic 
wavefields using cubic spline approximation, SEG (Society 
for Exploration Geophysicists) 67th Annual International 
Meeting, Nov. 2-7, 1997, Dallas Texas, USA. 
 
Phadke, S., Bhardwaj D. & Yerneni, S., Wave equation 
based migration and modelling algorithms on parallel 
computers, Proc. of SPG ( Society of Petroleum 
Geophysicists) second conference (1998), pp. 55 - 59. 
 
Phadke, S., Bhardwaj, D. and Yerneni, S., Development of 
Seismic Migration & modelling algorithms for imaging 
crustal structures, Department of Science & Technology 
(Govt. of India) project report, 1998.  
 
Poole, J., Preliminary survey of I/O intensive applications, 
Technical Report CCSF-38, Scalable I/O initiative, Caltech 
Concurrent supercomputing facilities, California Institute of 
Technology, Pasadena, 1995.  
 
Nieuwejaar, N. and Kotz, D., Low level interfaces for high 
level parallel I/O. In Input/output in parallel and distributed 
computer systems, edited by R. Jain, J. Werth and J. Browne. 
Boston:Kluwer Academic, (1996), pp. 205-223. 
 
Ron A. Oldfield, David E. Womble and Curtis C. Ober, 
Efficient Parallel I/O in Seismic Imaging, The Int. J. of High 
Performance Computing Applications, Vol. 12, No. 3, Fall 
1998, pp 333-344.  
 
Thakur, R., Lusk, E., and Gropp, W., User Guide for 
ROMIO: A High Performance, Portable MPI-IO 
Implementation, TM No. 234, ANL, IL 60439(USA), 1998. 
 
 
 


