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Summary 

Obtaining high-resolution images of the underground 
geological structures using seismic reflection data in prestack 
or poststack domain is crucial for exploration of oil and gas 
deposits. In the last decade the development of parallel 
distributed computing platforms, related system software and 
programming environments have made it possible to use 
parallel codes for high resolution imaging. Centre for 
Development of Advanced Computing (C-DAC) located at 
Pune, developed the OpenFrame architecture for scalable 
parallel computing applications. Several seismic migration and 
modelling algorithms were developed and implemented for 
imaging purposes. In this presentation we shall discuss several 
wave equation based 2D and 3D seismic migration and 
modelling algorithms and their parallel implementation using 
MPI message passing environment. Large-scale problems can 
be solved by implementation of highly efficient and scalable 
codes. These codes can be easily ported across cluster of 
workstations. 

Introduction 

High-performance computers are now essentials tools in 
scientific and technological research and development. With 
their high-speed processing capability, large-scale storage 
capacity and efficient I/O, computers are now important tools 
for simulation experiments and for processing large volumes 
of data. Future developments in high-speed and large-scale 
supercomputers will play a significant role in the research and 
development of advanced technology for the 21st century. 
Parallel processing is the key technology to make large-scale 
processing capability possible. 

Seismic imaging is a form of echo-reconstructive technique 
based on experiments, in which a certain earth volume is 
illuminated by an explosive or vibratory source, and the 
backscattered energy by the inhomogeneties of the medium is 
recorded on the surface in digital form. The inhomogeneties 
act as reflecting surfaces, which cause signal echoing; the 
echoes are then recorded at the surface and processed through 
a “computational lens” defined by a propagation model to 
yield an image of the inhomogeneties. 

By far the widest commercial application of non-intrusive 
imaging and that, for which the algorithms are most 
sophisticated, is seismic exploration for oil and gas. The 
seismic experiments are generally based on wave propagation, 
where ray paths are strongly curved by variations of 
compressional and shear wave velocities with depth. The 
wavefield can be trapped and multiply reflected between 
lithological layers. By solving the one-way scalar wave 
equation or full scalar wave equation with recorded data as the 
initial condition, we solve for the complexities of the wave 
propagation, leading to an image of the reflecting surfaces 

(interfaces in the velocity field). This technique is known as 
seismic migration. 

Forward modelling, where the synthetic data is generated for a 
given earth model, is a key step in the process of seismic 
inversion, where one tries to estimate the physical properties 
of the earth. 80 to 90 percent of the computer time in an 
inversion algorithm is spent on generating synthetic data. 
Parallel and efficient algorithms are therefore necessary for 
this purpose. 

In this paper we shall describe several migration and 
modelling algorithms that are developed and parallelized for a 
distributed memory machine. Performance and efficiency is 
achieved by proper restructuring of the codes. All the imaging 
algorithms have been tested for both synthetic and real data 
sets.  

Parallel Computing and Seismic Data Processing 

There is a strong consensus amongst the computer 
professionals, that the greatest gains in price/performance can 
only be achieved through multiple processor parallel systems. 
Parallel computers are characterized by two or more 
processing elements and memory, tied together by some 
interconnection network. Abundance of relatively slow 
processors, working together to solve one problem, provides 
the necessary performance.  

The trend in parallel computing is to move away from 
specialized traditional supercomputing platforms, such as Cray 
/ SGI T3E, to cheaper and general purpose systems consisting 
of loosely coupled components built up from single or 
multiprocessor PCs or workstations. This approach has a 
number of advantages, including being able to build a 
platform for a given budget, which is suitable for a large class 
of applications and workloads.  

The hardware technology and economic forces are right for an 
explosion of parallel processing into the market at all levels. 
Parallel processing, or concurrent computing as it is 
sometimes termed, is not conceptually new. The jobs that can 
be broken into multiple tasks that in turn be handed out to 
individual workers for simultaneous execution, are most 
suitable for parallel machines.  

Recently, cluster of workstations or network of workstations 
has gained popularity as they provide a very cost-effective 
parallel-computing environment. Most of these clusters use 
Network File System (NFS) and MPI (Message Passing 
Interface) as message passing library. MPI calls allow us to 
communicate and synchronize between the processors. One 
limitation of NFS is that the I/O nodes are driven by standard 
UNIX read and write calls, which are blocking requests. This 
is not a problem for applications with small volume of I/O, but 
as the volume increases (as in 3D seismic acquisition), it is 
necessary to be able to overlap computations with the I/O to 
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maintain efficient operation (Olfield et al., 1998, Poole, 1994). 
In the present study we have used both MPI and MPI I/O to 
improve the performance and efficiency of the codes 
(Bhardwaj et. al. 2000). 

Conceptually, MPI consists of distributed support software 
that executes on participating UNIX / LINUX hosts on a 
network, allowing them to interconnect and cooperate in a 
parallel distributed computing environment. MPI offers an 
inexpensive platform for developing and running application. 
Heterogeneous machines can be used in a networked 
environment. The MPI model is a set of message passing 
routines, which allows data to be exchanged between tasks by 
sending and receiving messages. 

Seismic Data Processing occupies a significant role in the 
exploration of oil and natural gases. Over the last two decades 
the computational requirements of the SDP activities have 
grown up many folds due to the increase in the data volume as 
well as the development in the mathematical algorithms. Three 
dimensional data acquisition has become routine as it has 
become necessary to look at the minor details of the 
underground geology.  

Wave equation based methods (Phadke et.al. 1998) are 
gaining more and more popularity in recent years as they 
provide finer detailed geological features than other 
conventional methods as well as they preserve amplitude 
information. Advanced techniques are distinguished primarily 
by their use of wave equation. The most common advanced 
techniques include seismic migration and forward modelling. 
Finite difference methods are most suitable for migration and 
modelling as they offer most direct solution to the problem in 
terms of the basic equation and initial and boundary 
conditions.  

By nature most seismic problems carry an inherent parallelism 
in subdivision by source, receivers, frequency or wave 
number. Indeed the problem decomposition in several 
domains is possible. With the change in demand it has become 
very difficult for a processing facility build around a serial 
architecture machine to cope up with increase in data volume. 
The I/O problems are also better solved in parallel processing. 
The wave equation based methods are computationally more 
expensive but suitable for parallelization. The seismic 
processing industries all over the world have found parallel 
processing as the only solution to the challenges in probing the 
earth’s interior for natural resources. 

The digital data that needs to be processed before obtaining an 
interpretable image of the subsurface geological structures in 
enormous, amounting to 100s of GB (Giga Bytes) or a few TB 
(Tera Bytes) for 3D acquisition. All this numerical input will 
be passed perhaps 10 to 20 times through a major computer 
facility, and only after the complex numerical operations, the 
final processed sections are examined by geophysicists and 
geologists to formulate an initial or penultimate interpretation. 
Parallel processing is the only answer to cope with increase in 
data volume and changes in processing methodology. we are 
fortunate that Seismic Data Processing (SDP) is an ideal 
application for parallel architecture machines. 

Migration Algorithms 

The stacking of seismic data is a form of data compression, 
which improves signal-to-noise ratio and produces idealized 
seismic traces simulating a coincident source-receiver 
experiment. Migration of the resultant data set, called the zero-
offset seismic section or the post-stack time section, is known 

as post-stack migration. Migration can also be carried out in 
the prestack domain and the results obtained are more accurate 
than that of poststack domain. However the computational 
requirements of prestack migration algorithms is orders of 
magnitude more than that of poststack migration algorithms. 
Processor speed, memory and I/O play a crucial role in the 
implementation of these algorithms. 

Most of the migration methods comprise of two steps, 
extrapolation and imaging. In the extrapolation step the 
wavefield is downward continued using some form of the 
acoustic wave equation. At each depth the image is formed at t 
= 0. The extrapolation of the wavefield can be carried out in t-
x-y, ω-x-y or ω-kx-ky domain. Here we shall describe the 
implementation of migration in ω-x-y and ω-kx-ky domains. 
Another technique, Reverse Time Migration (RTM), which 
makes use of the full wave equation is also developed and 
implemented on PARAM. 

3D Depth Migration in ω-x-y domain 

For 3D depth migration, the extrapolation equation in ω-x-y 
domain is a parabolic partial differential equation (Claerbout 
1985) consisting of a diffraction term and a thin lens term. The 
thin lens term, which accounts for lateral velocity variations, is 
usually ignored in time migration. The diffraction term is 
numerically solved by the method of splitting, which is the 
basis for the onepass approach. A Crank-Nikolson finite 
difference scheme with absorbing boundary conditions on the 
sides of the model is used for the solution. The thin lens term 
is solved analytically. Imaging is the summation of all the 
frequencies at t=0 for each depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (a) Zero-offset section of a line from 3D volume of 
SEG/EAGE overthrust model. (b) 3D depth migrated 
section. The velocity model is also superimposed on the 
migrated section. 

The depth migration algorithm in ω-x-y domain is inherently 
parallel in terms of frequencies. The parabolic approximation 
of the wave equation in frequency-space domain has 
decomposed the wave field into monochromatic plane waves 
that are propagating downwards. Therefore, each frequency 
harmonic can be extrapolated in depth independently on each 
processor and there is no need of inter-task communication. 
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One can introduce parallel task allocation into each frequency 
harmonic component with the ultimate goal being to have as 
many processors as frequencies. At each depth step all 
frequency components after extrapolation are summed up 
(Imaging Condition) to give the migrated image. The 
summation is carried out by automatic merging using 
MPI_Reduce. MPI I/O is used for reading and writing input 
data, velocity data and output data. 

We first tested the migration algorithm for the data set of 
SEG/EAGE (1997) Overthrust model. The original data had 
101X25 CDP traces with inline spacing of 100m and crossline 
spacing of 100m. We interpolated this data volume to 401X97 
CDP traces to make both inline and crossline spacing 25m for 
avoiding spatial aliasing. The input Fourier Transformed data 
size was of the order of 46MB. This data set was migrated 
with a depth step of 25m for 161 depth steps. Figure 1 shows 
the zero-offset section for one of the lines and the 3D migrated 
data for the same line. The velocity model is also 
superimposed on the migrated data to show the accuracy of 
the migration algorithm. Figure 2 illustrates the execution time 
as a function of number of processors. Since the problem size 
is small the speedup is not linear. 

The second data set used for testing comprised of 950X665 
CDPs. The inline spacing was 25m, the crossline spacing was 
37.5m, and the depth step size was 12.5m. The data was 
migrated for 480 depth steps. Table 1 shows all the other 
parameters and the time required to migrate this data set with 
64 processors. It is not possible to carry out a speedup analysis 
on this data volume, since there is not enough memory 
available on a smaller number of processors and the execution 
time required will also be very large. 

 
Figure 2: Number of processors versus execution time chart 

for SEG/EAGE Overthrust model.  
 

Size of  FFT data 1.3 GB 

Size of Velocity model 1.2 GB 

Frequency band 5 - 40 Hz 

Number of Processors 64 

Total Execution time with MPI-IO 7 hrs 44 mins 

Table 1: Problem size for the second data set and the 
execution time on 64 processors. 

 

3D Depth migration with PSPI Algorithm 

The phase-shift migration method (Gazdag, 1978) downward 
continues the wavefield in wavenumber-frequency domain, 
under the horizontally layered velocity assumption. If the 
migration velocity has no horizontal variations, the phase-shift 
method extrapolates the wavefield exactly by rotating the 
phases of each Fourier component. In the presence of lateral 
velocity variations, the exact extrapolation equation is no 
longer valid. PSPI (Phase Shift Plus Interpolation) method 
circumvents the problem of lateral changes in migration 
velocity by downward extrapolating the wavefield with 
several reference velocities and then interpolating the 
wavefield for the correct velocity (Gazdag and Sguazzero, 
1984).  

The parallel implementation of the PSPI method is also 
straightforward. The method is inherently parallel in terms of 
frequency. Here also the data if first Fourier transformed and 
then different processors read and migrate their share of 
frequencies. At each depth step phase-shift are applied for the 
reference velocities and then wavefield is interpolated for the 
actual velocity. One of the processors, which act as the master, 
collects and images the data. The method was developed and 
implemented on PARAM 10000 and was tested by applying it 
to both synthetic and real data sets.  

Reverse Time Migration (RTM) 

Reverse time migration technique solves the full wave 
equation by extrapolation in time, allowing both the upgoing 
and downgoing wave to propagate. The full wave equation is 
solved using finite-differences and the wavefield recorded at 
the surface is used as boundary condition. McMechan (1983) 
has given the description of the method in detail and 
demonstrated its ability to image all dips with great accuracy. 
Time marching of the wavefield is similar to any modelling 
algorithm. The parallelization is carried out using domain 
decomposition scheme. A good description of wave 
propagation using finite differences is given in the next section 
on modelling algorithms.  

RTM has the same problems with the stability and numerical 
dispersion that finite-difference (FD) modelling has, and it is 
straightforward (but computationally expensive) to control 
these problems. We have implemented a central difference FD 
scheme for RTM on PARAM 1000 using domain 
decomposition. The application of the method to both the 
synthetic and real data sets will be shown during presentation. 

Modelling Algorithms 

A basic problem in theoretical seismology is to determine the 
wave response of a given earth model to the excitation of an 
impulsive source by solving the wave equation. In scalar 
approximation, the acoustic wave equation may be solved to 
evaluate the waveform but only compressional waves are 
considered. A more complete approach is to study the vector 
displacement field using the full elastic wave equation for 
modelling both, compressional waves and shear waves. 
However, important wave properties such as attenuation and 
dispersion require a more sophisticated set of equations. These 
properties will be incorporated in the future versions of codes. 

2D Acoustic / Elastic Wave Modelling 

The mathematical model for elastic wave propagation in 2D 
heterogeneous media consists of coupled second order partial 
differential equations governing motions in x- and z- 
directions  
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Where u and w are horizontal and vertical displacements, 
wandu &&  are the horizontal and vertical particle velocities, 

xzzzxx and, σσσ  are the stress components,�λ and µ�DUH�
the Lamé parameters and ρ  is the density. 

Instead of solving these second order coupled partial 
differential equations we formulate them as a first order 
hyperbolic system (Virieux 1986, Vafidis 1988, Dai et al. 
1996):  
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When we move from elastic to acoustic media, the value of µ�
becomes zero. By substituting µ� ��� LQ� WKH�DERYH�HTXDWLRQ�ZH�
get a first order system of hyperbolic partial differential 
equations which governs the acoustic wave propagation.  
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Where p is the negative pressure wavefield, and K=λ is the 
incompressibility.  

For solving the first order hyperbolic system (6), we use the 
method of splitting in time (Vafidis 1988). An explicit finite 
difference method based on the MacCormack scheme is used 
for the numerical solution (Mitchell and Griffiths, 1981). This 
scheme is fourth order accurate in space and second order 
accurate in time. The model discretization is based upon 
regular grid. Sponge boundary conditions are used for 
attenuating the reflected energy from the left, right and bottom 

edges of the model (Sochaki et al. 1987). Free-surface 
boundary condition is used for top edge. 

The parallel implementation of an algorithm involves the 
division of total workload into a number of smaller tasks, 
which can be assigned to different processors and executed 
concurrently. This allows us to solve a large problem more 
quickly. The most important part in parallelization is to map 
out a problem on a multiprocessor environment. The choice of 
an approach to the problem decomposition depends upon the 
computational scheme. Here we have implemented a domain 
decomposition scheme.  

The idea of this scheme is simple. First, the problem domain is 
divided into a number of subdomains that are assigned to 
separate processors. The upper part of Figure 3 shows an 
example   of   the   division   of   problem   domain   into nine 
subdomains. Depending upon the number of available 
processors and the problem, one can divide the problem 
domain into any number of subdomains. Since MacCormack 
scheme uses a nine-point difference star, the calculation of the 
wavefield at an advanced time level for any grid point, 
requires the knowledge of the wavefield at 9 grid points of the 
current time level. For grid points along the boundaries of the 
subdomain, the information about the neighbouring grid points 
comes from the adjacent subdomains. Therefore after each 
time step the subdomains have to exchange some wavefield 
data. Lower part of Figure 3 shows the required memory space 
for each 2D array of the subdomain and the communication 
between two adjacent subdomains. The data in the darker 
region is sent to the lighter region of the neighbouring 
subdomian using MPI message passing calls. 

The two most important issues in this implementation are (1) 
to balance workload (2) to minimize the communication time. 
In a homogeneous multiprocessor environment, as in our case, 
the load balancing is assured if all the subdomains are of the 
same size. Minimizing the perimeters of the subdomain 
boundaries minimizes communication. 
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Figure 3: The upper picture shows the division of problem 
domain into a number of subdomains. The lower picture 
shows the communication between two adjacent tasks. 

In the MPI implementation of the modelling codes there is a 
master task and there are a number of worker tasks. The main 
job of master task is to divide the model domain into 
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subdomains and distribute them to worker tasks. The worker 
tasks perform time marching and communicate after each time 
step. As per the requirement of the user the snapshot and 
synthetic seismogram data are collected by the master and 
written out on the disk. 

The wave propagation described by equation 6 is valid for 
both acoustic and elastic media. This is because when the 
Poisson’s ratio becomes 0.5 the medium becomes acoustic 
(Phadke et. al. 2000). The upper part of Figure 4 shows the P-
wave velocity model used for calculating the synthetic data in 
a marine environment. There is a water layer at the top. The 
water bottom is quite undulating. Poisson’s ratio and density 
in other layers are 0.25 and 2.2gm/cc respectively. The 
snapshots of the wave propagation through this model are also 
shown in Figure 4. The synthetic seismogram data for this 
model are shown in Figure 5. A gain function is applied for 
display purposes. Since the free-surface boundary condition is 
used for the top edge, all kinds of multiples are also modeled. 
The example clearly demonstrates the capability of this 
approach for generating synthetic seismograms in realistic 
marine models. Another advantage of this approach is that 
acoustic and elastic wave propagation is modeled by the same 
code (µ = 0 for acoustic wave propagation). 

3D Acoustic wave Modelling 

The acoustic wave equation in a 3D heterogeneous medium is 
given by 
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Where, p is the negative pressure wavefield, , ρ is the density 
and K is the incompressibility. 

We divide the 3D geological model into a grid of I X J X K 
points. In order to obtain finite difference approximation to 
equations (1), let us introduce a set of indices i, j, k and n such 
that 
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where ∆x, ∆y and ∆z are the grid spacing and I ,J and K are the 
number of grid points in x- y- and z- directions respectively, 
∆t is the time step and N is the total number of time steps. 
Physical parameters, density ρ(i,j,k) and incompressibility 
K(i,j,k) are specified at each grid point. 

Substituting central difference approximations of the 
derivatives in equation (1), an expression is obtained for 

calculating the wavefield 1n
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where A, B, D, E, F, and G are the functions of physical 
parameters K and ρ  (Phadke et. al. 2000). 

Equation (9) is programmed to calculate the wave propagation 
in heterogeneous media. This approximation is second order 
accurate in both space and time. Grid dispersion is minimized 
by keeping the grid spacing smaller than one tenth of the 

shortest wavelength. The finite difference approximation (2) is 
stable if 
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where )KV( ρ= and maxV is the maximum wave velocity in 

the medium. 
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Figure 4: Snapshots of the wave propagation through the 
marine velocity model. Free surface boundary condition is 
applied on the top edge of the model and absorbing 
boundary conditions are applied to left, right and bottom 
edges of the model. 

Since a digital computer has finite memory capabilities, we 
have to restrict the model size to a fixed number of grid points. 
This introduces artificial boundaries at the edges of the model. 
In reality the earth is infinite and therefore all the energy 
impinging on these boundaries must be absorbed. For the 
finite difference scheme presented here a sponge boundary 
condition as described by Sochacki et.al. 1987, is used for 
attenuating the energy impinging on the left, right, bottom, 
front and back edges of the model. To implement sponge 
boundary condition extra grid points are added to gradually 
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attenuate the energy. The free-surface condition is applied to 
the top boundary. 
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Figure 5: Synthetic seismogram for the marine model. A 
uniform gain function is applied for plotting purposes. 

In the second order central difference scheme implemented 
here, one can observe that the calculation of the wavefield at a 
grid point at an advanced time level involves the knowledge of 
the wavefield at five grid points of the current time level and 
one grid point of the previous level. Therefore, it is a seven 
point differencing star. Therefore, if we use a domain 
decomposition scheme for solving this problem only first 
order neighbors will be involved in communication for central 
difference scheme.  

The parallel implementation of the algorithm is based on 
domain decomposition. Domain decomposition involves 
assigning subdomains of the computational domain to 
different processors and solving the equations for each 
subdomain concurrently.  The problem domain is a cuboid as 
shown in the figure 6,  

 

 

 

 

 

Figure 6: Problem domain (grid point size: I X J X K). 

This domain can be partitioned in three ways viz., stripe, 
hybrid stripe and checkerboard (Phadke et. al., 2000). The 
checkerboard partitioning involves the least communications 
and therefore is the most efficient.  

Again a message passing paradigm, MPI, is used for 
implementation of the 3D modelling algorithm. The present 
implementation is analogous to a Master-Worker system, 
where master works as the manager and assigns tasks to his 
workers. The main job of master is to provide the required 
data to all the workers and distribute workload properly, so 
that the idle time of the workers is minimized. Also, at the 
end, the master collects the completed work from all the 

workers, compiles it and writes it on the disk in a proper 
manner.     

Finite-difference computation of the snapshots can help in our 
understanding of wave propagation in the medium. We have 
used a constant velocity model as a numerical example for 
generating snapshots of 3D acoustic wave propagation. Source 
is placed at the center of the cubic model. For simplicity sake 
there is no density variation within the model. However, the 
algorithm can handle density variations. The source wavelet 
used for calculation of snapshots is the second derivative of a 
Gaussian function with a dominant frequency of 30Hz. Figure 
7 shows the snapshots of the 3D acoustic wave propagation 
through the constant velocity model. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Snapshots of the 3D acoustic wave propagation 
through the constant velocity model. 

We performed the benchmark tests of the parallel algorithm 
for problem size of 400 X 400 X 400 and a smaller problem 
size of 200 X 200 X 200.  The grid spacing in all three 
directions was 2m. A time step of 0.0001sec was used and the 
wave propagation was carried out for 0.1sec. Since the model 
size 400 X 400 X 400 is too large to fit into the processor 
memory of PARAM 10000, the test was performed using 
minimum of 8 processors for the bigger model.  

We have used three types of partitioning for the domain 
decomposition and have experimented with all the three types. 
For implementation point of view all three types of 
partitioning play an important role on the basis of memory 
access pattern. Theoretically, checkerboard partitioning has 
the best memory access pattern as the partitioned data can 
reside in the first level of the cache available. In the case of 
stripe and hybrid stripe partitioning, the access of data from 
memory may require swapping between first and second 
levels of cache, which is an expensive operation. Hybrid stripe 
partitioning has better access patter as compared to stripe 
partitioning.  Bar charts for execution time verses number of 
processors for 3D acoustic wave modeling, shown in Figure 
8a for two different problem sizes, support this statement.  
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A speedup analysis for the two model sizes (Figure 8b) shows 
a sub-linear speedup as we increase the number of processors. 
For a fixed model size the compute to communication ratio 
decreases with the increase in the number of processors. 
Therefore if we increase the size of the problem, better 
speedup can be achieved for large number of processes.  

Conclusions 

In this paper we have presented several migration and 
modelling algorithms for seismic imaging on a parallel 
distributed computer. PSPI algorithm and ω-x-y algorithm are 
both parallelized in frequency domain. RTM algorithm is 
parallelized by domain decomposition. Highly efficient and 
scalable codes were developed for these algorithms and 
implemented on PARAM 1000. The algorithms were tested 
for both synthetic and real data sets. Modelling algorithms for 
wave propagation in heterogeneous media were developed and 
parallelized using a domain decomposition scheme. Efficient 
codes for both acoustic and elastic wave propagation were 
developed. These codes form an integral part of the seismic 
inversion algorithms for estimating the physical properties of 
the subsurface.   
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Figure 8: Comparison of execution time for Stripe, Hybrid-
Stripe and Checkerboard partitioning for 3-D acoustic wave 
modeling for two model sizes viz., (a) 400 X 400 X 400,  
(b) 200 X 200 X 200. 
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