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SUMMARY 
 
This paper examines and anlyzes the dynamics of some 
computationally intensive seismic applications on a parallel 
computer. Natural divisibility into smaller tasks and localized 
communication pattern in seismic applications give strong 
motivation towards its performance on parallel machines. 
However we focus here on 3D poststack depth migration and 
2D modelling in particular. Implementation of these 
algorithms in a distributed computing environment is 
described. Maximum degree of parallelism, efficiency and 
speed is achieved by reformulating the problem and proper 
restructuring of the code. 
 
INTRODUCTION 
 
Undiscovered petroleum fields are not hidden by the earths' 
crust so much as they are burried under a mountain of seismic 
data. As recoverable deposits of petroleum become harder to 
find and the drilling and extraction costs increase, pressure 
grows for more detailed imaging of underground geological 
structures. Current advances in 3D data acquisiton have 
increased the input data volume by several folds. Processing 
methods have also changed for high resolution processing 
which amounts to an increase in the computational effort. 
With this change in demand it has become very difficult for a 
processing facility built around a serial architecture machine 
to cope with increase in data volume and changes in 
processing methodology. All over the world it has been 
realized that parallel processing is the only answer to this 
challenge and we are fortunate that SDP is an ideal 
application for parallel architecture machines.  
 
By nature most seismic problems carry an inherent 
parallelism in subdivision by sources, receivers, frequency or 
wave number. Thus, one must redefine the mathematical 
formulations and modify the serial algorithms in favour of 
new ones in order to obtain the full benefit of parallel 
computers. In this paper we describe the implementation of 
3D poststack depth migration in frequency space domain and 
2D acoustic and elastic wave modelling algorithms on a 
network of workstation using PVM (Parallel Virtual 
Machine) parallel programming environment.  
 
WAVE EQUATION BASED METHODS 
 
The wave equation based methods are widely recognised in 
the industry as more accurate while providing finer detailed 
geological features than other conventional methods. 
However, the wave equation based methods are 

computationally more expensive but suitable for currently 
available parallel computers.  
 
Advanced processing techniques are distinguished primarily 
by their use of the wave equation, which introduces an 
elemnet of mathematical rigor and computational 
complexities not found in  conventional techniques. The most 
common adnaced techniques include seismic migration and 
forward modelling. 
 
The finite difference methods have gained popularity in 
computational seismology since their adoption in late sixties, 
as they offer a most direct solution to the problem expressed 
in terms of the basic equations, and the initial and boundary 
conditions. The finite difference solutions of both migration 
and modelling equations, generally require large computer 
memory and high computational speed. However, with the 
advent of supercomputers they have received special 
attention due to their capability of accurately imaging the 
complex geological structures and producing complete 
synthetic seismograms for reallistic earth models. 
 
3D POST-STACK DEPTH MIGRATION  
 
Mathematical basis for migration in ω-x domain 
 
Seismic migration is the process through which echo 
sounding data recorded at the surface are mapped into images 
of the earths’ subsurface properties (Claerbout, 1985). For 
laterally varying structures, the methods based upon the 
parabolic approximation of the wave equation are most 
common in use..  
 
The migration method comprises of two steps, extrapolation 
and imaging. The extrapolation equation is a parabolic partial 
differential equation derived from the dispersion relation 
(Ristov, 1980) 
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where x, y and z are inline, crossline and depth axes 
respectively, kx, ky and kz are the wavenumbers in x, y and z 
directions respectively, v is the velocity and ω is the 
frequency. By approximating the square root terms by 
continuous fraction expansion (Ma, 1981) we obtain a 45 
degree approximation. By inverse Fourier Transforming in x 
and z we obtain the parabolic partial differential equation. 
This equation is numerically solved by the method of 
splitting, which is the basis for the onepass approach. A 
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Crank-Nikolson finite difference scheme with absorbing 
boundary conditions on the sides of the model is used for the 
solution. Imaging is the summation of all the frequencies at 
t=0 for each depth. 
 
Parallel Implementation 
 
The depth migration algorithm in ω-x domain is inherently 
parallel in terms of frequencies. The parabolic approximation 
of the wave equation in frequency-space domain has 
decomposed the wave field into monochromatic plane waves 
that are propagating downwards. Therefore, each frequency 
harmonic can be extrapolated in depth independently on each 
processor and there is no need of intertask communication. 
One can introduce parallel task allocation into each frequency 
harmonic component with the ultimate goal being to have as 
many processors as frquencies. At each depth step all 
frequency components after extrapolation are summed up 
(Imaging Condition) to give the migrated solution. That can 
be done by automatic merging and reduces computational 
time.  
 
Impulse response of 3D migration operator 
 
The best way to test a 3D migration algorithm is to calculate 
its impulse response. An  
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PARALLEL MODELLING ALGORITHMS 
 
While migration is an inverse procedure, a forward procedure 
known as forward modelling is used to produce synthetic 
seismic sections. In forward modelling one starts with an 
assumed earth model and generate a wave field by solving 
wave equation. In order to gain the acceptable geological 
model, comparisons are often made between the synthetic 
and observed seismograms; errors are attributed to either 
inaccuracies in the model or other factors not acounted for. 
The model is then modified in an effort to account for the 
errors until adequate agreement has been reached.  
 
A basic problem in theoretical seismology is to determine the 
wave response of a given model to the excitation of an 
impulsive source by solving the wave equations under certain 
simplification. When the ray tracing method is used only 
wave arrival times are determined. In scalar approximation, 
the acoustic wave equation may be solved to evaluate the 
waveform but only compressional waves(P-waves) are 
considered. A more complete appraoch is to study the vector 
displacement field using the full ealstic wave equation for 
modelling both P-waves and shear waves(S-waves). 
However, important wave properties such as attenuation and 
dispersion require a more sophisticated set of equations. 
 
The propagation of both, acoustic and elastic waves in 2D 
heterogeneous media is formulated as a first order hyperbolic 
system (Virieux 1984, Virieux 1986, Vafidis 1988, Dai et al. 
1996) given by 
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where p is the negative pressure wavefield, u and w are the 
horizontal and vertical components of the velocity vector 
respectively, ρ is the density and K is the incompressibility.  
 
For elastic wave modelling 
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where u w
• •

and are the horizontal and vertical particle 
velocities respectively, σ σ σxx zz xz, and are the stress 
components, λ and µ are the Lamé parameters and ρ is the 
density. 
 
The first order hyperbolic system (1) is solved by the method 
of splitting in time (Strang 1968, Vafidis 1988). An explicit 
finite difference method based on the MacCormack scheme 
is used for the numerical solution. This scheme is fourth 
order accurate in space and second order accurate in time. 
The finite difference approximation to the hyperbolic system 
is expressed as 
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where F Fx x, * are one dimensional finite difference operators 
approximating the one-dimensional equation 
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and F Fz z, * are one dimensional finite difference operators 
approximating the one-dimensional equation 
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Application of each one-dimensional operator advances the 
wavefield by half a time step. The MacCormack scheme is a 
well known technique for solving first order hyperbolic 
systems (Mitchell and Griffiths, 1981) and consists of a 
predictor and a corrector. The advancement of the wavefield 
at any grid point to the next time level requires the 

knowledge of the wavefield at 9 points of the previous time 
level. Therefore it is a nine point difference star. Sponge 
boundary conditions are used for attenuating the reflected 
energy from the model boundaries (Sochaki et al. 1987). 
 
PARALLEL IMPLEMENTATION  
 
The parallel implementation of an algorithm involves the 
division of total workload into a number of smaller tasks, 
which can be assigned to different processors and executed 
concurrently. This allows us to solve a large problem more 
quickly. The most important part in parallelization is to map 
out a problem on a multiprocessor environment. The choice 
of an approach to the problem decomposition depends upon 
the computational scheme. Here we have implemented a 
domain decomposition scheme.  
The idea of this scheme is simple. First, the problem domain 
is divided into subdomains that are assigned to separate 
processors. Upper picture shows an example   of   the   
division   of   problem   domain   into  four subdomains. 
Depending upon the number of available processors and the 
problem, one can divide the problem domain into any number 
of subdomains. Since we are using a nine point difference 
star, the calculation of the wavefield at an advanced time 
level for any grid point, requires the knowledge of the 
wavefield at 9 grid points of the current time level. For grid 
points along the boundaries of the subdomain, the information 
about the neighbouring grid points comes from the adjacent 
subdomains. 
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Figure 1: The upper picture shows the division of problem 
domian into a number of subdomians. The lower picture 
shows the communication between two adjacent tasks. 
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Therefore after each time step the subdomains have to 
exchange wavefield data. Lower picture shows the required 
memory space for each 2D array of the subdomain and the 
communication between two adjacent subdomains. The data 
in the darker region is sent to the lighter region of the 
neighbouring subdomian using PVM message passing calls.  
 
The two most important issues in this implementation are (1) 
to balance workload (2) to minimize the communication time. 
In a homogeneous multiprocessor environment, as in our case, 
the load balancing is assured if all the subdomains are of the 
same size. Communication is minimized by minimizing the 
perimeters of the subdomain boundaries. 
 
Conceptually, PVM consists of distributed support software 
that executes on participating UNIX hosts on a network, 
allowing them to interconnect and cooperate in a parallel 
distributed computing environment (Geist et al. 1994). PVM 
offers an inexpensive platform for developing and running 
application. Heterogeneous machines can be used in a 
networked environment. The PVM model is a set of message 
passing routines which allows data to be exchanged between 
tasks by sending and receiving messages. 
 
In the PVM implementation of the modelling codes there is a 
master task and there are number of worker tasks. The main 
job of master task is to divide the model domain into 
subdomains and distribute them to worker tasks. The worker 
tasks perform time marching and communicate after each 
time step. As demanded by the user the snapshot and 
synthetic seismogram data are collected by the master and 
written out on the disk. 
 
NUMERICAL EXAMPLES 
 
The accuracy of the wave modelling algorithms is tested by 
calculating the wavefield for a corner model shown in Figure 
2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Velocity model for testing the wave propagation 
algorithms. Vp, ρ and σ denote the P-wave velocity, density 
and Poisson ratio in the media respectively. 
The physical parameters (P-wave velocity, density and 
Poisson ratio) inside  the  corner region and outside the 
corner region are also shown. The source pulse is a band 
limited Ricker wavelet with a dominant frequency of 30 Hz. 
The model was discretized using a grid spacing of 2m. 

 
 

Snapshot at 0.1 sec Snapshot at 0.2 sec

Snapshot at 0.3 sec Snapshot at 0.4 sec
 

Figure 3: Snapshots of the acoustic wave propagation 
through a corner model. Free surface boundary condition is 
used at the top boundary and the absorbing boundary 
condition is used at all other boundaries. 
 
 

Snapshot at 0.1 sec Snapshot at 0.2 sec

Snapshot at 0.3 sec Snapshot at 0.4 sec  
Figure 4: Snapshots of the elastic wave propagation through 
a corner model. The snapshots show the vertical component 
of the particle velocity. Absorbing boundary condition is used 
at all the model boundaries. 
Figure 3 shows the snapshots of the acoustic wave 
propagation in the corner model. On these pictures one can 
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see the direct wave, the wave reflected from the free surface, 
the wave diffracted from the corner, and the reflected, 
refracted and transmitted waves. Figure 4 shows the 
snapshots of the elastic wave propagation. On these 
snapshots the direct, reflected, refracted, converted and 
transmitted waves can be easily observed. 
 
DISCUSSION AND CONCLUSIONS 
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